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Abstract 
Online advertising has exploded during the past few years; the current UK 

market is evaluated at £3.5 billion, and it grew dramatically by about 2200% during 

2000s1

Furthermore, from a software engineering perspective, we provide support 

for using distributed open source technologies to tackle the complex analysis of 

advertising data.  

. Behavioural targeting (BT) is largely regarded as one of the most effective 

technique in optimizing online advertising. However, despite the impressive 

numbers involved in this industry, there are only a few academic studies performed 

on real world click-stream data. (e.g. Yan, Liu, Wang, Zhang, Jiang & Chen 2009; 

Ratnaparkhi 2010; Chen, Pavlov, & Canny 2009). This may be linked to the 

extreme demands on system resources required by the massive amount of 

advertising data available. Yan et al. (2009) confirmed that BT can significantly 

increase the effectiveness of one specific type of online advertising, the so-called 

search advertising. In this work we investigate whether techniques linked to BT 

may be beneficial to online display advertising. Using data from a major 

commercial ad network, we show that a simple BT technique such as user 

clustering could improve click-through ratio by more than 900%. 

1. Introduction 
The history of modern advertising in mass media started in 1630s, when 

Théophraste Renaudot printed the first advertising in the French newspaper La 

Gazette de France (Pincas & Loiseau 2008). The first online advertising appeared 

much later in 1994 with the creation of Netscape browser. Growing popularity of 

Internet and fast adoption of Internet browser as a communication channel started 

a trend of migrating advertising revenue from traditional media towards the 

Internet. According to Barclays Capital the U.S. online ad revenue in 2009 reached 

                                                           
1 Source Internet Advertising Bureau UK 
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almost 10% of the U.S. spending on advertising summing up to over $240 billion. 

The increase in the penetration of Internet which reached in 2009 over 77% of the 

entire U.S. population and 28% worldwide2

Perhaps one of the most important features of Internet advertising is that it 

stretches the traditional definition of advertising as a one way mass-media 

communication channel. Internet allows advertisers to communicate with users 

instantly by presenting a content which users can interact with. Marketers can 

reach individual users based on their actions or their geographical location. The 

interactive nature of Internet allows marketers to provide instant feedback to the 

marketing campaign by recording how end users are interacting with the ads.  

 made the Internet an important 

advertising mediums, on equal footing with traditional print, TV and radio 

advertising. 

Internet advertising can be divided into separate business models such as 

search and display advertising. Search advertising is associated with ads showed 

along the results returned by a search engine and typically it contains text only 

ads. Display advertising usually consists of static or dynamic images; it appears on 

web pages and is often used for branding (Dreze & Husherr 2003). One advantage 

of search over display advertising is that it is easier to understand the interests of 

users who provide it directly as search keywords. Understanding interests of 

visitors of websites who see display ads is a more subtle task and requires use of 

such techniques such as cookies or targeting based on user geographical location. 

Effectiveness of advertising campaigns is playing increasingly important role 

in online advertising. There are many metrics by which the advertising campaign 

can be judged and many ways in which it can be improved.  In the ideal situation 

the advertising effects can be measured by the increase in sales caused by online 

campaign. Often however such a measurement is not possible, especially when 

online campaign advertises products which cannot be bought on the Internet. The 

effectiveness of advertising depends in the first place on the objectives which were 

                                                           
2 Source Internet World Stats: http://www.internetworldstats.com/stats.htm 
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set for the advertising campaign. Sometimes the role of advertising is to build a 

brand image or simply to inform about new product which only indirectly can lead 

to higher sales. In this work the main metric used to evaluate the improvement in 

delivering the ads will be a click-through ratio (CTR). CTR is the number of times 

the ad was clicked divided by the number of times the ad was presented to all 

users. 

The basic strategy of increasing the effectiveness of ads is based on 

targeting, that is controlling which ads are presented to which users. This process 

can be achieved in many ways. Examples include such techniques as 

geographical targeting which allows for targeting ads based on physical location of 

Internet users. It is also possible to target ads based on time or by the context of 

the page user visits. For example an advertiser may place car ads on a website 

about sport cars. There are dozens of parameters which can be utilised in the ad 

optimisation and targeting. However, in this project we will focus on targeting 

based only on one parameter which will define similarity between Internet users. 

We will assume that users who visited same websites are more similar to each 

other than users who visited different websites and that similar users are more 

likely to click on the same ads. This assumption will be tested using real data 

recorded by one of the biggest online ad networks in United Kingdom. 

One of the intrinsic problems in performing real life samples is gigantic 

volume of data which needs to be analysed in order to find answers to even the 

most straightforward questions. The amount of traffic recorded by big ad networks 

often amounts to billions of impressions (ad views) a month and the file sizes 

involved in calculations easily go into terabytes. The large number of statistical 

data renders most of the standard statistical tools unusable and requires new 

approaches. In the case of this project just the data from one day requires analysis 

on millions of vectors with over one hundred thousand dimensions each. Because 

of this single requirement the method of analysing such immense amount of data 

is one of the most important aspects of this project. 
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The goal of this work is to examine whether BT techniques shown to 

improve effectiveness of search advertising (Yan et al. 2009) may be applied 

successfully to online display advertising. A special technique specific to BT (user 

clustering) will be applied to data recorded by a commercial ad network during one 

day on 4th of August 2010. 

2. Online advertising and behavioural targeting 
Ad servers record both ad views (so called impressions) and clicks. More 

advanced ad servers are able to gather additional information about each user 

such as exact time when user interacted with the ad, her/his geographic location, 

the Internet connection speed, resolution of the screen or the type of browsers 

used and many more parameters.  Online ad networks are becoming increasingly 

sophisticated in using wide range of parameters passed by users’ browser to 

improve the effectiveness of online advertising. It has been shown that online 

advertising has different effects based on user’s gender (Wolin 2003) or nationality 

(Brettel 2010). Since it is possible to instruct ad server to behave differently based 

on for example user’s gender then trivially we can assume that behavioural 

targeting should work in those cases. However, usually it is not possible to get 

personal information about Internet users and different means of distinguishing 

between Internet users are necessary. 

This research will differentiate between users based on their click-stream 

activity, that is based on all pages visited by and all clicks resulted from users 

actions while seeing ads. Click-stream activity was recorded by the ad server and 

is stored in our dataset. There are subtle differences between this approach and 

the research done by Yan et al. (2009). First of all in the research by Yan et al. 

users are clustered based on the URLs they clicked in the search engine. In our 

case we will use URLs of the pages which users visited as opposed to the URLs of 

ads on which users clicked. Typically the average CTR in display advertising is 

very low (in our dataset it is below 0.1%). Therefore, it is better to use URLs visited 

by users to build their profiles rather than the URLs from the ads, otherwise we will 
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lack the data for over 99.9% of all users. Additionally in order to minimise the 

number of dimensions in each user’s vector we only use the domain part of each 

URL. Thus if a user visited two URLs “www.example.com/page1.html“ and 

“www.example.com/page2.html“ both of those URLs are treated as the same 

dimension “www.example.com“. We use the words “domain” and “URL” 

interchangeably since all the URLs which are analysed in this research are 

represented by their domain only. 

3. Distributed processing 
Most of the computations which need to be performed in this research are 

conceptually straightforward. However, the input data is substantially large and the 

computations have to be distributed across many servers which makes this task 

non-trivial. One way of dealing with distributed data processing is offered by 

MapReduce programming model (Dean & Ghemawat 2008) which was originally 

developed by Google and is available in several Open Source implementations. 

This project will use the Apache Hadoop implementation of MapReduce framework 

which is available as Open Source software.  

MapReduce is a programming model which simplifies parallelisation of 

computations and allows researcher to focus on implementing the specific problem 

which needs to be calculated. MapReduce automatically parallelize the 

implemented algorithms and hides from us all additional details required for 

parallelisation such as fault tolerance, data distribution and load balancing. A 

program written in a MapReduce framework may be easily executed on several 

machines thus allowing for analysis on large body of data. 

A more natural way of analysing data is offered by SQL-like database which 

allows asking questions in a SQL-like language. Using SQL is usually a more 

convenient way of analysing data than implementing the same logic in one of the 

standard programming languages. The same applies to MapReduce as 

implementing algorithms in MapReduce framework is typically more complicated 

than using SQL queries. This is the reason why this project uses Apache Hive. 
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Hive is a datawarehouse database which works on top of Hadoop and translates 

SQL commands into underlying MapReduce procedures which are executed by 

Hadoop. 

Hadoop and Hive make processing of large quantities of data relatively 

easy. However, data mining algorithms such as K-means, Cluto or Canopy 

(Kanungo et al. 2000) require separate implementation. This project used Apache 

Mahout project which includes K-means algorithm implemented in a MapReduce 

Hadoop framework. Mahout is a scalable machine learning library which among 

many others implements various clustering algorithms. Mahout allows to distribute 

the computing on many servers and in this way it speeds up the total calculations 

time.  

After selecting the technology required to implement required calculations it 

was necessary to find flexible cloud hosting with the support for Hadoop. While it is 

possible to install Hadoop on almost any server the preferred solution would be not 

to acquire any hardware. This project used Amazon Elastic MapReduce – a 

flexible on demand computing in the cloud, which offers support for Hadoop and 

works on top of Amazon Elastic Compute Cloud (EC2).  

Just how important was the use of MapReduce shows the total time for 

running all algorithms. Overall all analysis took over 4000 normalized hours, that is 

how much time it would take if all analysis would be performed on one small 

Amazon EC2 server (so called m1.small). In other words it would take over 166 

days to perform analysis on a single machine. Thanks to cloud computations this 

time was compressed into just few weeks. 

4. Dataset 
The data analysed in this experiment was recorded by one of the leading 

UK ad networks (which asked to keep their name confidential). All data was 

recorded during one day on August  4th 2010. The dataset contains two types of 

users’ actions – impressions and clicks. Every time a person saw an ad on any of 
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the websites within ad network that fact was recorded in database as an 

“impression”. Each time someone clicked on an ad that fact was recorded in 

database as a “click”. The dataset is rather large as it contains over 80 millions of 

impressions records and over 60 thousands of clicks just within single day of 

serving online advertising. Overall in a single day over ten millions of unique users 

visited over one hundred and forty thousand different websites (counted by 

domains) and saw almost two thousands ads. For a comparison the study 

published by Yan et al. (2009) analysed 6 millions of records recorded during 7 

days. 

We filter all records to ensure that internet robots hits are not included in our 

dataset. Internet bots, such as web spiders, are software applications that browse 

WWW usually in order to provide data for search engines. To filter out all robots 

actions all users who recorded more than 100 clicks or impressions are removed 

from the dataset. To avoid any privacy concerns we will not store or analyse any 

private user information that is any information which can be used to identify users 

– such as users IP or their exact geographic location. 

The format of both clicks and impressions is exactly the same and is 

presented in table 1. The data is saved in hourly data files which are stored in 

Amazon Simple Storage Service (S3). Amazon S3 provides a flexible storage 

where gigabytes of source data are securely stored and can be easily accessed by 

Amazon EC2 cloud computing servers. 

 

Name Sample Data Description 

Event Time 2010-08-01 12:30:04 The time when a 

user saw an ad 

User ID 546c14241e0f1aa5a0e54420b44f4e2f Unique user ID 

which is stored in 

user browser as a 

cookie and can be 
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used to identify a 

user. 

Ad ID 60041 Unique Id of each 

ad  

Page URL http://www.example.com/page.html Page where the ad 

was presented to 

user. 

Referrer URL http://www.google.com Page which user 

arrived from before 

he saw an ad. 

Campaign ID 12243 ID of the campaign. 

Each campaign 

groups one or more 

ads which typically 

advertise the same 

product for the 

same advertiser. 

Advertiser ID 398 ID of the advertiser. 

Each campaign 

belongs to one and 

only one advertiser. 

Typically campaigns 

are thematically 

similar as they 

advertise products 

from the same 

advertiser. 

 
Table 1. Format of impressions and clicks log used in our experiment 
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4.1 Data representation 
In order to perform data mining analysis on our dataset we need a way to 

represent it in the numerical format. One way of representing URLs is to count the 

frequency of occurrences of each term (in our case a domain part of each URL) 

and represent users vectors using term frequency weighting. An improved form of 

this representation is a term frequency – inverse document frequency (TF-IDF) 

weighting (Salton & Buckley 1988; Papineni 2001).  

TF-IDF weight is commonly used in text and data mining. This statistic 

measure is used to evaluate how important is a given term in the corpus of all 

documents. Term frequency shows how many times a given term occurred in a 

given document and an inverse document frequency shows the importance of a 

term by dividing number of documents containing a given term by total number of 

documents. Inverse document frequency allows us to give less weight to very 

common words. 

Each user ( ) is represented as a vector of TF-IDF weights: 

 

Where: 

• f indicates each user, f is the number of all users 

•  for each URL, where l is the number of all URLs 

• a is a number of times user i visited URL j 

• b is a number of all users who visited URL j 

Intuitively we can see that if the URL occurs frequently then the document 

frequency is large and the inverse document frequency will be small. The inverse 

document frequency is normalised with the number of terms. Finally the logarithm 

is used in order to decrease the effect of term frequency on the final weight.  
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Representing users as vectors of TF-IDF weights has some computational 

drawbacks as each of the over 10 millions of users consists of a vector containing 

over one million of weights, one per each URL.  This brings some computation 

challenges and as a result some further simplifications are required. One way to 

minimize the number of dimensions is to group similar URLs by their domain. This 

optimisation decreased the number of dimensions to over one hundred thousand 

per every vector. 

 The side effects of representing users as vectors containing TF-IDF 

weights is that most of users did not visit large majority of the URLs and therefore 

most of weights in each user vector equal zero. In order to minimize the number of 

dimensions kept in each vector we represent those using sparse vectors. Sparse 

vector stores only non-zero values assuming that all other values are equal zero. It 

is an often case in data mining that vectors have a large number of dimensions 

where most of them are zeros and Apache Mahout supports this data 

representation. 

5. Experimental Design 
To ensure that results of our experiment can be compared with the results 

achieved in paper publisher by Yan et al. (2009) we tried to keep the symbols and 

experimental setup as similar as possible. Some things needed to be changed 

since there are few major differences between the data being analysed in this and 

the research by Yan et al. (2009). One major difference is that the experiment is 

performed on display advertising as opposed to search advertising. Another 

difference is that experimental data is recorded during 24 hours of serving ads as 

opposed to 1 and 7 days. Running time of programs became so significant that 

analysing more that one day worth of data was not feasible.  

5.1 Symbols 
This section contains definitions of mathematical symbols which are used 

across experiment. The set of n advertisements is represented as: 
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Let  be a set of such users who displayed or clicked on ad . 

The dataset (see table 1) contains UserID and Ad ID which uniquely identify each 

user and are used to count how many times each user saw each ad. 

A boolean function defines if a user  clicked on the ad : 

 

The main goal of a behavioural targeting strategy is to group users into 

separate clusters which allow to simulate delivery of different ads to different 

groups of users. A distribution of such n users into K clusters is defined as a 

function: 

 

Each  indicates all users from users set  who were grouped into the kth 

clustering subset. Such a kth user segment can be represented as: 

 

5.2 Evaluation metrics 
Some of the evaluation metrics used in this experiment are common in 

online advertising, such as CTR and overall CTR improvement. Additionally this 

research will use some of the statistics used by Yan et al. (2009), that is within- 

and between-ads similarity, precision, recall and F-measure. Finally we will use  

t-test to confirm the significance of our results. 

5.2.1 Within- and Between- Ads similarity 
The within- and between-ads metrics attempt to answer a question whether 

users who clicked the same ads are more similar to each other than to users who 
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clicked different ads. This statement is a basic assumption of any behavioural 

targeting technique.  

We define the similarity between two user vectors in terms of classic Cosine 

similarity: 

 

where <,> is a vector inner-product and || is a vector 2-norm. Since TF-IDF weights 

cannot be negative this metric should give us values from the range 0 to 1. 

Given the above Cosine similarity measure it is possible to define the within- 

and between similarities metrics. The within ad similarity is an averaged sum of 

Cosine similarity of all users who clicked given ad . For each ad  we define a 

within-ads user similarity as: 

 

where  is a number of users who clicked ad .  

Between ads similarity measure resembles the within-ads similarity 

definition with the difference that it measures the similarity between users who 

clicked different ads. The between ads similarity answers the question how similar 

are users who clicked different ads. Between ads similarity is defined as: 

 

Where: 

•  is a number of users who clicked ad   

•  is number of users who clicked ad .  
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Finally, using within and between ads similarity we define a ratio between 

 and  as: 

 

The R measure will increase with the increase of within-ads similarity and 

decrease if the between-ads will be bigger. Therefore the bigger the R measure 

the more likely that our behavioural targeting strategy achieved its desired results.  

It is possible that the similarity between some ads ( ) may equal 0. In those 

rare cases we may not be able to calculate the R measure. We introduced 

therefore a new parameter which holds a very small value (d = 0.001) just to 

ensure that the division in our case is always possible. It is worth noting that Yan et 

al. (2009) do not mention any issues with calculating R in all cases. 

Finally we use ,  and R to evaluate how similar are all ads within the 

dataset. In order to do so we will calculate the average within and between ad 

similarity: 

   and   

The total averaged ratio R is calculated as an squared average of all ads ratios R: 

 

5.2.2 Ads Click-Through Rate 
The CTR measure is the most common performance indicator of any click-

based advertising campaign. Typically a high CTR ratio indicates that users are 

more interested in a given ad and are paying more attention to advertising 

message (Joachims et al. 2005). Many advertising campaigns use more 

sophisticated indicators such as measures of whether Internet users “converted” 
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into customers. That is if a user after clicking or seeing an ad acted in a specific 

way, for example whether s/he bought the product being advertised.  

We define CTR ratio of an ad as a number of users who clicked the ad 

divided by number of users who clicked or displayed it: 

 

To see if the user segmentation can increase an ad CTR we define the CTR 

of ad  over user cluster  as: 

 

where  is the number of users in kth cluster  After segmenting users 

in k clusters we check the CTR of each ad per each cluster to see if delivering the 

ad only to given cluster would improve its CTR. 

After calculating the CTR for each ad-cluster pair we answer the question 

just how much the overall CTR can be increased by targeting users to different 

user groups. This can be done by taking the maximum CTR of each ad from all 

clusters we can possibly deliver it to and averaging the resulting sum: 

 

where  is user segment which has a highest CTR for a given ad : 

 

It is important to note that it is not guaranteed that the user segment with the 

highest CTR for a given ad  has the biggest number of impressions for that ad. 

We will discuss implication of this assumption later in the discussion section. 
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5.2.3 Precision, Recall and F-measure 
There are few ways in which we can assess the quality of CTR 

improvement. Calculating precision and recall is a common way to check the 

quality of captured data (Rijsbergen 1979). If we consider users who clicked on 

ads as positive cases and users who saw the ad but did not click on it as a 

negative case we can calculate the precision as: 

 

The precision in this case is equal to the number of users from given cluster  

who clicked the ad divided by the number of all users (from cluster ) who saw 

given ad which is the CTR of an ad in given user segment. 

Recall tells us how much percent of all users who clicked an ad are within 

given user segment. It is defined as a number of users from cluster  who clicked 

an ad divided by the number of all users from an entire dataset who clicked the 

same ad: 

 

where  is the number of users in our dataset. 

A high precision will indicate that segments are tightly clustered around 

users who clicked given ads while recall will show us how much of all the clicks on 

a given ad where included in a given cluster.  

We can further combine both of these measures into a harmonic mean of 

precision and recall called F-measure: 

 

The F-measure (Hripcsak & Rothschild 2005) shows how well our clustering is 

performing for a given ad  and a cluster . 
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The F-measures from all clusters and ads can be summed into a total F measure 

averaged for all ads and best performing clusters: 

 

6. Implementation details 
 Large datasets are common in Internet advertising yet it is still a difficult 

task to perform data mining on data which contains many billions of records. A 

researcher who is analysing such datasets needs to use scalable technology in 

order to process such quantities of data. Most of the technologies used to 

implement data mining algorithms in this project are focused on distributed 

processing using MapReduce framework.  

The programming languages of choice are Python for text processing and 

preparation of input vectors, Hive SQL for high level data transformations and Java 

for implementing k-means clustering.  

K-means clustering is a standard clustering method (Kanungo et al. 2000) 

which can be used for clustering numerical vectors. K-means partitions vectors into 

k clusters by assigning each vector to the closest cluster centre. Initial cluster 

centres can be selected randomly in the first iteration of the algorithm or can be 

provided to Mahout as a separate set of vectors. The k-means algorithm calculates 

new “means” vectors by calculating a centroid within each cluster and in next 

iteration it repeats a procedure by assigning each vector to new cluster centers.  

 

6.1 Servers setup 

All computations were executed on Amazon Elastic Compute Cloud (EC2) 

which provides flexibility in choosing servers size and can dynamically allocate 

time required to execute all experiments. 
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Data mining analysis were performed on five high-CPU instances with the 

following configuration: 

7 GB of memory 

20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute Units each) 

1690 GB of storage 

64-bit platform 

All servers are based on Debian Linux and have installed Hadoop v 0.20. 

6.1 Dataset 
The data used in the experiment is stored in the tab separated format which 

needed to be imported into Hive database for further analysis. Hive represents 

data in easy to use table format, see listings 1 and 2. Note that both clicks and 

impressions have the same format. 

CREATE EXTERNAL TABLE event_clicks (  

    event_time string, 

    user_id string, 

    banner_id int, 

    page_url string, 

    referrer_url string, 

    campaign_id int, 

    advertiser_id int 

 )  

 PARTITIONED BY(event_date string) 

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

Listing 1. Clicks Hive table definition 
 
CREATE EXTERNAL TABLE event_impressions (  

    event_time string, 

    user_id string, 

    banner_id int, 
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    page_url string, 

    referrer_url string, 

    campaign_id int, 

    advertiser_id int 

 )  

 PARTITIONED BY(event_date string) 

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

Listing 2. Impressions Hive table definition 
 

6.2 Building user vector 
To create users’ vectors we need to calculate the TF-IDF weights for each 

user-domain pair. In order to do so we need to create a function which retrieves 

the domain name from every URL. 

import sys 

from urlparse import urlparse 

 

def getDomain(): 

    for line in sys.stdin: 

        line = line.strip() 

        if line == "": 

            continue 

        (components) = line.split("\t") 

        url = components[0] 

        parts = urlparse(url) 

        output = parts.netloc 

        if len(components) > 1: 

            isFirst = True 

            for component in components: 

              if isFirst: 

                  isFirst = False 

                  continue 
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              output += '\t' + component 

        print output 

     

if __name__ == "__main__": 

    getDomain() 

 

Listing 3. Python file domain.py used for transforming URLs to domains 

We create first a helper table which contains user Ids, domain names and 

number of times each user have seen any ad under given domain. Hive does not 

offer a function which can retrieve domain components from the URL names and 

in order to do so a custom user defined function needed to be created (see listing 

3).  

CREATE EXTERNAL TABLE users_urls_impressions (  

    user_id STRING, 

    url STRING, 

    impressions INT 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE users_urls_impressions 

SELECT user_id, domain, COUNT(1) AS impressions  

FROM ( 

    FROM event_impressions e 

    MAP e.page_url, e.user_id 

    USING 'python /opt/etl/project/python/domain.py' 

    AS domain, user_id 

) domains 

GROUP BY user_id, domain; 

 

Listing 4. Hive SQL for retrieving list of domains per each user with the 

corresponding number of impressions. 
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Before proceeding to calculate  matrix we need to calculate the total 

number of impressions in each of the domains. 

CREATE EXTERNAL TABLE urls_impressions (  

    url string, 

    impressions int 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE urls_impressions 

SELECT domain, COUNT(1) AS impressions 

FROM ( 

    FROM event_impressions e 

    MAP e.page_url 

    USING 'python /opt/etl/project/python/domain.py' 

    AS domain 

) domains 

GROUP BY domain; 

 

Listing 5. Hive SQL query for calculating number of impressions in each of the 
domains 

Finally we are ready to calculate TF-IDF weights per each user-domain pair. 

CREATE EXTERNAL TABLE u_matrix_impressions (  

    user_id string, 

    url string, 

    u_ij double 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE u_matrix_impressions 

SELECT u.user_id, u.url, (LOG(u.impressions)+1) * 

LOG(#domains/d.impressions) 

FROM users_urls_impressions u 
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JOIN urls_impressions d ON d.url = u.url; 

Where number of domains (#domains) can be calculated as: 

select count(distinct url) from users_urls_impressions; 

Selecting final set of TF-IDF values to external file: 

hive -e 'SELECT * FROM u_matrix_impressions ORDER BY user_id' > 

./u_matrix_impressions.txt 

Listing 6. Calculating TF-IDF values. 

After calculating TF-IDF values and exporting them into local file we still 

need to perform additional transformation in order to shape that data into the final 

 vector. These calculations are done with the use of the python script from the 

listing 7. 

import sys 

from itertools import groupby 

import numpy 

import optparse 

 

import csv 

 

def getReader(filePath): 

    reader = csv.reader(open(filePath, "rb"), delimiter="\t", 

quoting=csv.QUOTE_NONE) 

    return reader 

 

def getUrlsAsSortedArray(fromFilePath): 

    urlsDict = getFirstColumnData(fromFilePath) 

    urls = sortValues(urlsDict) 

    i = 0 

    for urlKey in urls: 

        urlsDict[urlKey] = i 

        i += 1 



24 
 

    return urls, urlsDict 

     

def getFirstColumnData(fromFilePath): 

    urlsDict = {} 

    reader = getReader(fromFilePath) 

    for row in reader: 

        url = row[1] 

        urlsDict[url] = url 

    return urlsDict 

     

def sortValues(values): 

    keys = values.keys() 

    keys.sort() 

    return map(values.get, keys) 

 

def containsAnyValue(string, values): 

    return True in [value in string for value in values] 

 

def pivotData(inputFilePath, outputFilePath): 

    csvFile = open(outputFilePath, 'w') 

    csvWriter = csv.writer(csvFile, delimiter=" ", 

        quotechar='', quoting=csv.QUOTE_NONE) 

     

    urls, urlsDict = getUrlsAsSortedArray(inputFilePath) 

 

    lastUserId = None 

    vector = [] 

    userUrls = {} 

    reader = getReader(inputFilePath) 

    for row in reader: 

        userId = row[0] 

        if (userId == "NULL"): 

            continue 

        if lastUserId != userId and lastUserId != None: 

            vector.append(lastUserId) # user ID 

            vector.append(len(urls)) # size of the vector 
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            # create sparse vector 

            for urlKey in userUrls: 

                if not containsAnyValue(userUrls[urlKey], '\|,='): 

                    vector.append(str(urlsDict[urlKey]) + ":"  

                       + userUrls[urlKey]) 

            try: 

                csvWriter.writerow(vector) 

            except: 

                print str(vector)  

            vector = [] 

            userUrls = {} 

        userUrls[row[1]] = row[2] 

        lastUserId = userId 

         

    csvFile.close() 

 

if __name__ == '__main__': 

    usage = "usage: %prog inputFile outputFile" 

    parser = optparse.OptionParser(usage=usage) 

    options, args = parser.parse_args() 

    if len(args) == 2: 

        inputFile = args[0] 

        outputFile = args[1] 

    else: 

        print usage 

        sys.exit(1) 

     

    pivotData(inputFile, outputFile) 

Listing 7. Python script (pivot_data.py)  

Script from listing 7 creates a large file (many GB in size) which contains over one 

hundred thousand dimensions (one dimension for each of the domains) and over 

10 millions of vectors.  
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6.3 Clustering user vectors 
In the clustering phase we partition users’ vectors into subsets where data 

in each subset is similar according to some defined metric. Yan et al. (2009) do not 

specify which metric was used in creating clusters. We assume here that the same 

metric which is used for calculating the similarity between and within-ads is used 

for clustering, that is the Cosine metric. 

In order to perform clustering on the dataset of this size we use Apache 

Mahout – a data mining tool which is designed specifically to work in distributed 

environment across multiple CPUs or across clusters of machines. In this case 

Mahout performs all calculations running on Amazon EC2 cluster distributed 

across five large servers, each of them with 8 cores.  

We divide clustering process into three parts – preparation of the data, 

clustering and analyzing the output. Data preparation is an important and 

necessary step. Mahout understands only specific format and therefore our data 

needs to be transformed into special vectors before we can proceed with the 

clustering. We transform data into Mahout sparse vectors to store only non-zero 

values and in this way save disk space and speed up calculations. 

public class InputMapper extends Mapper<LongWritable, Text, Text, 

VectorWritable> { 

    private static final Pattern SPACE = Pattern.compile(" "); 

    private static final Pattern COLON = Pattern.compile(":"); 

   private Constructor<?> constructor; 

 

@Override 

protected void map(LongWritable key, Text values, Context context) throws 

IOException,   InterruptedException { 

    String[] numbers = InputMapper.SPACE.split(values.toString()); 

    SequentialAccessSparseVector sparseVector = null;  

    String keyName = ""; 
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    int vectorSize = -1; 

    for (String value : numbers) { 

      if (keyName.equals("")) { 

          keyName = value; 

          continue; 

      } else if (vectorSize == -1) { 

          vectorSize = Integer.parseInt(value); 

          sparseVector = new SequentialAccessSparseVector(vectorSize); 

          continue; 

      } else if (value.length() > 0) { 

          String[] valuePair = InputMapper.COLON.split(value); 

          if (!valuePair[1].equals("NULL")) { 

            sparseVector.setQuick(Integer.parseInt(valuePair[0]), 

Double.valueOf(valuePair[1])); 

          } 

      } 

    } 

    if (sparseVector != null) { 

        try { 

          Vector result = new NamedVector(sparseVector, keyName); 

          VectorWritable vectorWritable = new VectorWritable(result); 

          context.write(new Text(String.valueOf(vectorSize)), 

vectorWritable); 

        } catch (Exception e) { 

          throw new IllegalStateException(e); 

        } 

    } 

  } 

} 

Listing 8. Mahout code, written in Java, for transforming the sparse vector into 
Mahout sequence. 

Once the data is correctly prepared for Mahout analysis we can execute the 

Mahout clustering mechanism.  
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$python /opt/etl/project/python/pivot_data.py ./u_matrix_impressions.txt 

./pivoted_impressions.txt 

hadoop fs -put ./pivoted_impressions.txt testdata 

$ mahout org.apache.mahout.clustering.codes.kmeans.PrepareVector --input 

testdata --output sequencedata 

$ mahout org.apache.mahout.clustering.codes.kmeans.Job  

--input sequencedata --distanceMeasure 

org.apache.mahout.common.distance.CosineDistanceMeasure  

--output output -k 160 -x 50 --clusters random-clusters  

--clustering –overwrite 

$ mahout org.apache.mahout.clustering.codes.kmeans.ClusterDumper  

-p /user/hadoop/output/clusteredPoints  

-s /user/hadoop/output/clusters-5 -o ./final-clusters.txt 

hive -e 'LOAD DATA LOCAL INPATH "/mnt/project/mahout/final-clusters.txt" 

OVERWRITE INTO TABLE u_cluster' 

Listing 9. Mahout command line parameters for executing clustering and dumping 

clustered data. We group all vectors into 160 clusters using 50 iterations. 

At this stage we are ready to perform clustering on users vectors. Listing 9 

shows all the commands which are required to prepare sparse vectors, execute 

clustering process, dump the resulting clustering and import final clusters back into 

Hive for further analysis. Note that due to the size limitations of this paper only the 

most important source code from modified files is included here. Specifically the 

ClusterDumper and the kmeans.Job classes needed to be modified in order to 

ensure that Mahout is able to perform analysis on our large dataset. Performing all 

analysis in the clustering step was the most computationally expensive part of the 

entire experiment as it took about 2 hours per each of the 50 clustering iterations. 
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6.4 CTR analysis on users clusters 
In the previous step we clustered users using Apache Mahout project and 

then we imported those clusters into “u_cluster” table (see listing 10 for definition 

of “u_cluster”).  

CREATE EXTERNAL TABLE u_cluster (  

    user_id STRING, 

    cluster_id INT 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

CREATE EXTERNAL TABLE ads_nonopt_ctr ( 

    banner_id INT, 

    ctr DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

CREATE EXTERNAL TABLE ads_clusters_ctr ( 

    banner_id INT, 

    cluster_id INT, 

    ctr DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

CREATE EXTERNAL TABLE ads_opt_ctr ( 

    banner_id INT, 

    ctr DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 
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Listing 10. Hive definition of tables related to CTR calculations 

We calculate the CTR of all ads, that is the CTR without any optimisation.  

First we calculate “non-optimized” CTR per each ad 
INSERT OVERWRITE TABLE ads_nonopt_ctr 

SELECT i.banner_id, c.clicks / i.impressions AS ctr 

FROM ( 

    SELECT COUNT(user_id) AS impressions, banner_id 

    FROM event_impressions 

    GROUP BY banner_id 

) i LEFT OUTER JOIN 

( 

    SELECT COUNT (user_id) AS clicks, banner_id 

    FROM event_clicks 

    GROUP BY banner_id 

) c ON (i.banner_id = c.banner_id); 

 

Then we calculate CTR per each ad-cluster pair: 

INSERT OVERWRITE TABLE ads_clusters_ctr 

SELECT i.banner_id, i.cluster_id, c.clicks / i.impressions AS ctr 

FROM ( 

    SELECT COUNT(i.user_id) AS impressions, i.banner_id, cl.cluster_id 

cluster_id 

    FROM event_impressions i JOIN u_cluster cl ON (i.user_id = 

cl.user_id) 

    GROUP BY i.banner_id, cl.cluster_id 

) i LEFT OUTER JOIN  

( 

    SELECT COUNT(c.user_id) AS clicks, c.banner_id, cl.cluster_id 

cluster_id 

    FROM event_clicks c JOIN u_cluster cl ON (c.user_id = cl.user_id) 

    GROUP BY c.banner_id, cl.cluster_id 

) c ON (i.banner_id = c.banner_id and i.cluster_id = c.cluster_id) 

WHERE i.impressions > 50; 
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Calculate CTR of optimized ads: 
INSERT OVERWRITE TABLE ads_opt_ctr 

SELECT banner_id, MAX(ctr) as max_ctr 

FROM ads_clusters_ctr 

GROUP BY banner_id; 

 
Finally we calculate total CTR improvement: 
SELECT SUM(d.delta_a) / COUNT(d.delta_a), COUNT(d.delta_a) 

FROM (  

    SELECT (o.ctr - no.ctr) / no.ctr AS delta_a  

    FROM ads_nonopt_ctr no JOIN ads_opt_ctr o ON (no.banner_id = 

o.banner_id) 

) d; 

Listing 11. CTR calculations performed by Hive 

The code from listing 11 performs CTR analysis, calculates optimised and non-

optimised CTR and the total CTR improvement. 

6.5 Within- and between-ads user similarity 
The within-ads and between-ads similarity is calculated only between users 

who ever clicked any ads. The goal of this analysis is to check if the users who 

clicked the same ads are move similar to each other than users who clicked 

different ads. We do not reuse clustering information in this part of experiment. 

In order to calculate similarity between users we select only those users 

who clicked on any ad and calculate cosine similarity between them. Only around 

0.02% of all users in our dataset clicked on ads and therefore the similarity 

analysis should be computationally less expensive and we can perform it in Python 

(see listing 12). 

import sys 

import math 

import optparse 
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import csv 

 

def getReader(filePath, delimiter=" "): 

    reader = csv.reader(open(filePath, "rb"), delimiter=delimiter, 

quoting=csv.QUOTE_NONE) 

    return reader 

 

def getOneColumnData(fromFilePath, delimiter=" ", columnNumber = 0): 

    dict = {} 

    reader = getReader(fromFilePath, delimiter) 

    for row in reader: 

        record = row[columnNumber] 

        dict[record] = record 

    return dict 

 

def dot(v1, v2): 

    sum = 0.0 

    for key in v1: 

        # vectors are sparse 

        if (v2.has_key(key)): 

            sum += v1[key] * v2[key] 

    return sum 

 

def norm(v): 

    sum = 0.0 

    for key in v: 

        sum += v[key] * v[key] 

    return math.sqrt(sum) 

 

def cosineSimilarity(v1, v2): 

  return dot(v1, v2) / (norm(v1) * norm(v2)) 

 

def string2dict(vector): 

    result = {} 

    i = 0 

    for value in vector: 
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        if i < 2: i += 1; continue 

        if isinstance(value, str): 

            s = value.split(':') 

            result[int(s[0])] = float(s[1]) 

    return result 

 

def filterClickUsers(inputFilePath, usersFile): 

    tempFile = "/tmp/click_users_vectors.txt" 

    csvFile = open(tempFile, 'w') 

    csvWriter = csv.writer(csvFile, delimiter=" ", 

        quotechar='', quoting=csv.QUOTE_NONE) 

     

    usersDict = getOneColumnData(usersFile) 

    reader = getReader(inputFilePath) 

    for row in reader: 

        userId = row[0] 

        if userId in usersDict: 

            csvWriter.writerow(row) 

    csvFile.close() 

    return tempFile 

 

def runJob(inputFilePath, usersFile, outputFilePath): 

    csvFile = open(outputFilePath, 'w') 

    csvWriter = csv.writer(csvFile, delimiter="\t", 

        quotechar='', quoting=csv.QUOTE_NONE) 

     

    usersDict = getOneColumnData(usersFile) 

     

    # select only those users who we want to analyse  

    filteredUsersPath = filterClickUsers(inputFilePath, usersFile) 

     

    readerLeft = getReader(filteredUsersPath) 

    for rowLeft in readerLeft: 

        userIdLeft = rowLeft[0] 

        if userIdLeft not in usersDict: 

            continue  
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        # calculate similarity between this user and all next users in 

the file 

        readerRight = getReader(filteredUsersPath) 

        for rowRight in readerRight: 

            userIdRight = rowRight[0] 

            if (userIdLeft == userIdRight) or (userIdRight not in 

usersDict): 

                continue 

            # remove user IDs before dot and norm vector calculations 

            rowLeft[0] = rowRight[0] = 0.0 

            sim = cosineSimilarity(string2dict(rowLeft), 

string2dict(rowRight)) 

            # save the output (save only non-zero results) 

            if sim != 0.0: 

                vector = [userIdLeft, userIdRight, sim] 

                csvWriter.writerow(vector) 

         

    csvFile.close() 

 

if __name__ == '__main__': 

    usage = "usage: %prog inputFile listOfUsers outputFile" 

    parser = optparse.OptionParser(usage=usage) 

    options, args = parser.parse_args() 

    if len(args) == 3: 

        inputFile = args[0] 

        usersFile = args[1] 

        outputFile = args[2] 

    else: 

        print usage 

        sys.exit(1) 

     

    runJob(inputFile, usersFile, outputFile) 

Listing 12. Python script (similarity.py) for calculating cosine similarity between 

user vectors 
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In order to perform cosine similarity calculations we need to select all users 

who ever clicked on any ad. Listing 13 shows how to select all such users and how 

to call similarity.py script in order to retrieve the cosine similarity pairs. 

Select list of users who clicked on any ad 

$ hive -e 'SELECT DISTINCT user_id FROM event_clicks' > ./click_users.txt 

 

Calculate similarities between users: 

$ python /opt/etl/project/python/similarity.py ./pivoted_impressions.txt 

./click_users.txt ./users_cossim.txt 

 

Import user-pairs cosine similarities back into hive  

CREATE EXTERNAL TABLE users_cossim (  

    user_id1 STRING, 

    user_id2 STRING, 

    cossim DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

LOAD DATA LOCAL INPATH '/mnt/project/users_cossim.txt' OVERWRITE INTO 

TABLE users_cossim; 

 

Listing 13. Selecting “click users” and calculating cosine similarity with the use of 

similarity.py script 

 

After calculating cosine similarity between all pairs of users we can calculate  

and . 

CREATE EXTERNAL TABLE users_cossim_within ( 
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    banner_id INT, 

    sw DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE users_cossim_within 

SELECT banner_id, 2 / count(uc.cossim) * (count(uc.cossim) - 1) * 

sum(cossim) AS sw 

FROM ( 

     SELECT uc.user_id, uc.banner_id, avg(uc.cossim) AS cossim 

        FROM ( 

            SELECT ec.user_id, ec.banner_id, cossim  

            FROM event_clicks ec JOIN users_cossim uc1 ON (ec.user_id = 

uc1.user_id1) 

            UNION ALL 

            SELECT ec.user_id, ec.banner_id, cossim  

            FROM event_clicks ec JOIN users_cossim uc2 ON (ec.user_id = 

uc2.user_id2) 

        ) uc 

        GROUP BY uc.banner_id, uc.user_id) uc 

GROUP BY banner_id; 

 

Calculate total : 

SELECT SUM(sw) / COUNT(1) AS total_sw FROM users_cossim_within; 

 

Listing 14. Hive  calculations 

Although it is possible to use subselects in Hive it is often necessary to use 

many additional helper tables for storing intermediate results. Listing 15 shows 

such additional tables which are aiding us in calculating total . 

CREATE EXTERNAL TABLE banner_users ( 

    banner_id INT, 

    user_id STRING 
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 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE banner_users 

SELECT banner_id, user_id 

FROM event_clicks 

GROUP BY banner_id, user_id; 

 

 

CREATE EXTERNAL TABLE banner_pair_users ( 

    banner_id1 INT, 

    banner_id2 INT, 

    user_id1 STRING, 

    user_id2 STRING 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE banner_pair_users 

SELECT bu1.banner_id, bu2.banner_id, bu1.user_id, bu2.user_id 

FROM banner_users bu1 JOIN banner_users bu2; 

 

CREATE EXTERNAL TABLE banner_pair_users_cossim ( 

    banner_id1 INT, 

    banner_id2 INT, 

    user_id1 STRING, 

    user_id2 STRING, 

    cossim DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE banner_pair_users_cossim 

SELECT bpu.banner_id1, bpu.banner_id2, bpu.user_id1, bpu.user_id2, 

uc.cossim 
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FROM banner_pair_users bpu JOIN users_cossim uc ON (bpu.user_id1 = 

uc.user_id1 AND bpu.user_id2 = uc.user_id2); 

 

CREATE EXTERNAL TABLE banner_distinct_users_count ( 

    banner_id INT, 

    number_of_users INT 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE banner_distinct_users_count 

SELECT banner_id, COUNT(distinct user_id) 

FROM event_clicks 

GROUP BY banner_id; 

 

CREATE EXTERNAL TABLE banner_cossim_between_sum ( 

    banner_id1 INT, 

    banner_id2 INT, 

    cossim_sum DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE banner_cossim_between_sum 

SELECT bpuc.banner_id1, bpuc.banner_id2, SUM(bpuc.cossim) 

FROM banner_pair_users_cossim bpuc 

GROUP BY bpuc.banner_id1, bpuc.banner_id2; 

 

 

Calculate  for each banner pairs: 

CREATE EXTERNAL TABLE banner_cossim_between ( 

    banner_id1 INT, 

    banner_id2 INT, 

    cossim DOUBLE 

 )  
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 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE banner_cossim_between 

SELECT banner_id1, banner_id2, cossim_sum / (bduc1.number_of_users * 

bduc2.number_of_users) AS bs 

FROM banner_cossim_between_sum bcbs 

JOIN banner_distinct_users_count bduc1 ON (bcbs.banner_id1 = 

bduc1.banner_id) 

JOIN banner_distinct_users_count bduc2 ON (bcbs.banner_id2 = 

bduc2.banner_id); 

 

Number of distinct banners (#db): 

SELECT COUNT(distinct banner_id) AS db from event_clicks; 

and finally we calculate total : 

SELECT SUM(cossim)/(#db * #db) from banner_cossim_between; 

 

Listing 15. Hive SQL calculations for   

 

Note that  and  are stored in separate tables which makes it easy to 

retrieve those values later in order to perfom t-test between those values (Cox & 

Hinkley 1974). After calculating  and  we can calculate the R measure, see 

listing 16. 

CREATE EXTERNAL TABLE banner_r ( 

    banner_id1 INT, 

    banner_id2 INT, 

    r DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

We add 0.001 in order to avoid dividing by zero 
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INSERT OVERWRITE TABLE banner_r 

SELECT sb.banner_id1, sb.banner_id2, (sum(sw1.sw) + SUM(sw2.sw)) + 0.001 

/ (2 * SUM(sb.cossim) + 0.001) AS r 

FROM banner_cossim_between sb  

JOIN users_cossim_within sw1 ON (sw1.banner_id = sb.banner_id1) 

JOIN users_cossim_within sw2 ON (sw2.banner_id = sb.banner_id2) 

GROUP BY sb.banner_id1, sb.banner_id2; 

 

SELECT MIN(sw) FROM users_cossim_within WHERE sw != 0; 

 

SELECT COUNT(DISTINCT banner_id) FROM event_clicks; 

 

Finally we calculate total R: 

select count(distinct banner_id1) as db FROM banner_r; 

select sum(r)/(#db * #db) from banner_r; 

 

Listing 16. Hive R calculations 

 

6.6 F-measure, Precision and Recall 
In order to calculate F-measure we need first to calculate precision and 

recall. All these measure will help us to evaluate how effective was the 

improvement in CTR. First we calculate the recall, see listing 17.  

CREATE EXTERNAL TABLE ad_all_clusters_rec ( 

    ad_id INT, 

    cluster_id INT, 

    rec DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE ad_all_clusters_rec 

SELECT cc.banner_id, cc.cluster_id, cc.clicks / cl.clicks AS rec 
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FROM  

( 

    SELECT COUNT(c.user_id) AS clicks, c.banner_id, cl.cluster_id 

cluster_id 

    FROM event_clicks c JOIN u_cluster cl

    GROUP BY c.banner_id, cl.cluster_id 

 ON (c.user_id = cl.user_id) 

) cc JOIN 

( 

    SELECT COUNT(user_id) AS clicks, banner_id 

    FROM event_clicks 

    GROUP BY banner_id 

) cl 

ON (cc.banner_id = cl.banner_id); 

 

We get the optimized clusters (g*) 

CREATE EXTERNAL TABLE ads_clusters_rec ( 

    ad_id INT, 

    cluster_id INT, 

    rec DOUBLE 

 )  

 ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE ads_clusters_rec 

SELECT ac.ad_id, acl.cluster_id, ac.rec 

FROM ad_all_clusters_rec ac  

JOIN ads_opt_clusters acl ON (ac.ad_id = acl.banner_id and ac.cluster_id 

= acl.cluster_id); 

 

Calculate total average Recall: 

SELECT SUM(rec) / COUNT(1) FROM ads_clusters_rec; 

 

Listing 17. Hive Recall calculations 
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After recall we calculate precision, that is a measure to present only relevant 

items. In our case it is simply equal the CTR from each clusters. 

Create table which contains ads clusters with maximum CTR: 

CREATE EXTERNAL TABLE ads_opt_clusters ( 

    banner_id INT, 

    cluster_id DOUB:E 

 )  

ROW FORMAT DELIMITED 

FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE ads_opt_clusters 

SELECT acc.banner_id, acc.cluster_id 

FROM ads_clusters_ctr acc join ads_opt_ctr aoc ON (acc.banner_id = 

aoc.banner_id) 

WHERE acc.ctr = aoc.ctr; 

 

First calculate precision just for optimised clusters: 

CREATE EXTERNAL TABLE ads_clusters_prec ( 

    banner_id INT, 

    cluster_id INT, 

    prec DOUBLE 

 )  

ROW FORMAT DELIMITED 

FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE ads_clusters_prec 

SELECT ac.banner_id, acl.cluster_id, ac.ctr AS prec 

FROM ads_opt_ctr ac  

JOIN ads_opt_clusters acl ON (ac.banner_id = acl.banner_id); 

Calculate total average Prec: 

SELECT SUM(prec) / COUNT(1) FROM ads_clusters_prec; 

 

Listing 18. Hive Precision calculations 
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At this stage we are ready to calculate the F-measure which combines both 

precision and recall in the harmonic mean. 

CREATE EXTERNAL TABLE ads_clusters_f ( 

    ad_id INT, 

    cluster_id INT, 

    f DOUBLE 

 )  

ROW FORMAT DELIMITED 

FIELDS TERMINATED BY '\t'; 

 

INSERT OVERWRITE TABLE ads_clusters_f 

SELECT acp.banner_id, acp.cluster_id, (2 * acp.prec * acr.rec) / 

(acp.prec + acr.rec) AS f 

FROM ads_clusters_prec acp  

JOIN ads_clusters_rec acr ON (acr.ad_id = acp.banner_id AND 

acr.cluster_id = acp.cluster_id); 

 

 

Calculate total F measure: 
select sum(f) / count(1) from ads_clusters_f; 

 

Listing 19. Hive F-measure calculations 

7. Results 
The results were calculated for 160 clusters of users. The research done by 

Yan et al. (2009) calculated results for 4 groups of clusters of 20, 40, 80 and 160 

clusters each and achieved best CTR improvement for 160 clusters. Due to limited 

computational resources and much larger data set this experiment was able to 

calculate the results only for 160 clusters. 
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7.1 Within- and between-ads user similarity 
Similarities   and  were calculated in order to assess if users who 

clicked the same ads (within-ads similarity) are indeed more similar to each other 

than users who clicked different ads (between-ads similarity). Table 2 present 

results of calculating  and . 

   R 

80 millions records 0.259 0.041 1.4 

 
Table 2. Within- and between-ads user similarity. 

From the results in table 2 we can see that total averaged  is much higher 

than total . An independent t-test confirmed the difference to be highly significant  

. 

The results confirmed our initial hypothesis that users who clicked the same 

ads are more similar to each other than users who clicked different ads.  However, 

 in our case is almost twice as big as the same results from the research by Yan 

et al. (2009). That suggests that the users who clicked different ads are still quite 

similar to each other. This difference may be caused by the fact that in this 

experiment users are clustered based on the domains they visited and not based 

on the URLs. Therefore users who visited different URLs are often within the same 

domain and therefore are more likely to be more similar to each other. High  may 

explain rather low R measure which is an order of magnitude lower than the results 

achieved by Yan et al. (2009). 

As mentioned previously the R measure calculation uses additional 

parameter in order to ensure that all R values are possible to calculate. The 

resulting R does not change much (variations within 0.1%) when d is changed from 

0.001 to 0.0001 so we can assume that this parameter is safe to use and it doesn’t 

change the final results significantly. 
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7.2 CTR improvement 
From the perspective of the ad network one of the most important 

evaluation metric is the CTR improvement. Clustering users into 160 clusters 

improved overall CTR by 909%. This number is approximately within the range of 

improvement achieved by Yan et al. (2009), however it is rather high. One of the 

possible explanations is that search advertising CTR is typically much higher than 

display advertising CTR and therefore it may be easier to improve display 

advertising lower CTR. 

 CTR improvement 

K-means 
(160 segments) 

909% 

 

Table 3. Total CTR improvement 

It is important to discuss how exactly this improvement was calculated. The 

total averaged CTR averages all best CTR achieved for every ad in all clusters and 

therefore we do not take into account how much of the ads were delivered into 

such a user segment. It is possible that some segments may capture only few 

percents of all impressions and clicks of a given ad and still can yield the highest 

CTR. In order to minimise such a possibility our calculations ensured that each ad-

cluster has at least 50 impressions before it is included in the final CTR 

improvement measure. 

It would be an interesting project to further explore the possibilities of 

improving the total CTR with the restriction that each ad needs to deliver specific 

number of impressions. 

7.3 Precision, Recall and F-measure 
Table 4 presents information on recorded precision, recall and F-measure on 160 

clusters. 
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K-means 
(160 segments) 

Precision 83.4% 

Recall 8.07% 

F-measure 0.12 

 

Table 4. Precision, recall and F-measure. 

K-means on 160 clusters achieved much higher precision than Yan et al. 

(2009) but also much lower recall. Small recall indicates that only about 8% of all 

impressions were captured in the clusters with highest CTR. In other words even 

though the improvement in CTR was large it contained only 8% of all clicks 

recorded in the dataset. It should be possible to decrease the CTR on the cost of 

recall and yield lower CTR improvements but applied to a higher number of clicks. 

8. Discussion 
This study considered the impact of behavioural targeting techniques on 

online display advertising. More specifically, we investigated whether simulating 

delivery of traffic to chosen clusters will increase the overall CTR of all ads. We 

examined the data using different evaluation metrics such as: user similarity, 

precision, recall, F-measure and we used the t-test to confirm the significance of 

the results. The experimental design was implemented with the help of scalable 

data mining libraries which allowed successful analysis of large body of data.  

This study was motivated by Yan et al. (2009) which found that behavioural 

targeting in search advertising can yield up to 670% increase in the overall CTR. 

We performed the systematic study of clickstream logs of a commercial ad network 

in which we found that the overall CTR can be increased as much as 909%.  

This research shows that it is possible to achieve higher CTR by the means 

of clustering users. However there are a few issues with focusing only on the 

overall CTR. In calculating CTR improvement we ignore how much impressions 

were delivered to each cluster. In the display advertising model advertisers 

typically pay per number of impressions and not per clicks. Therefore, to effectively 
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use these techniques in real-life we should take into account not only CTR but the 

ad network contracts as well, that is a number of ad views which ad network 

agreed to deliver.  

Yet another issue is that the data was clustered and tested on the same 

day. This shows theoretical improvements given that we would know to which 

clusters users should be delivered to. However, in reality the users would be 

clustered on the data from the previous day and ads would be targeted to such 

clusters the day after. The same applies to choosing which clusters yield highest 

CTR. It is relatively easy to check the CTR for each ad-cluster pairs but predicting 

beforehand which clusters are the best candidates would require additional work.  

The results of our current study suggest that the behavioural targeting has 

an enormous potential to improve the effectiveness of online display advertising. 

While the clustering method used in this experiment was limited to a post-hoc 

analysis of data collected within a single day, it is highly probable that a similar 

model would perform very well in reality. We base this conclusion on previous 

research that showed similar improvements following BT applied to search 

advertising (Yan et al. 2009). Furthermore, our model was rather simple; it should 

be possible to achieve even better results using more advanced user 

segmentation methods. 
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