
BIRKBECK, UNIVERSITY OF LONDON

MSc Cognitive and Decision Sciences

How much behavioural targeting can help

online display advertising?

Supervisor: Professor of Behavioural Science, Nick Chater

Candidate: Radek Maciaszek

Date: September 2010

2

Contents

Contents ... 2
Abstract ... 3
1. Introduction .. 3
2. Online advertising and behavioural targeting .. 6
3. Distributed processing ... 7
4. Dataset ... 8
4.1 Data representation .. 11
5. Experimental Design ... 12
5.1 Symbols ... 12
5.2 Evaluation metrics ... 13
5.2.1 Within- and Between- Ads similarity .. 13
5.2.2 Ads Click-Through Rate .. 15
5.2.3 Precision, Recall and F-measure ... 17
6. Implementation details ... 18
6.1 Dataset ... 19
6.2 Building user vector ... 20
6.3 Clustering user vectors ... 26
6.4 CTR analysis on users clusters .. 29
6.5 Within- and between-ads user similarity ... 31
6.6 F-measure, Precision and Recall .. 40
7. Results ... 43
7.1 Within- and between-ads user similarity ... 44
7.2 CTR improvement ... 45
7.3 Precision, Recall and F-measure .. 45
8. Discussion .. 46
9. References .. 48

3

Abstract
Online advertising has exploded during the past few years; the current UK

market is evaluated at £3.5 billion, and it grew dramatically by about 2200% during

2000s1

Furthermore, from a software engineering perspective, we provide support

for using distributed open source technologies to tackle the complex analysis of

advertising data.

. Behavioural targeting (BT) is largely regarded as one of the most effective

technique in optimizing online advertising. However, despite the impressive

numbers involved in this industry, there are only a few academic studies performed

on real world click-stream data. (e.g. Yan, Liu, Wang, Zhang, Jiang & Chen 2009;

Ratnaparkhi 2010; Chen, Pavlov, & Canny 2009). This may be linked to the

extreme demands on system resources required by the massive amount of

advertising data available. Yan et al. (2009) confirmed that BT can significantly

increase the effectiveness of one specific type of online advertising, the so-called

search advertising. In this work we investigate whether techniques linked to BT

may be beneficial to online display advertising. Using data from a major

commercial ad network, we show that a simple BT technique such as user

clustering could improve click-through ratio by more than 900%.

1. Introduction
The history of modern advertising in mass media started in 1630s, when

Théophraste Renaudot printed the first advertising in the French newspaper La

Gazette de France (Pincas & Loiseau 2008). The first online advertising appeared

much later in 1994 with the creation of Netscape browser. Growing popularity of

Internet and fast adoption of Internet browser as a communication channel started

a trend of migrating advertising revenue from traditional media towards the

Internet. According to Barclays Capital the U.S. online ad revenue in 2009 reached

1 Source Internet Advertising Bureau UK

4

almost 10% of the U.S. spending on advertising summing up to over $240 billion.

The increase in the penetration of Internet which reached in 2009 over 77% of the

entire U.S. population and 28% worldwide2

Perhaps one of the most important features of Internet advertising is that it

stretches the traditional definition of advertising as a one way mass-media

communication channel. Internet allows advertisers to communicate with users

instantly by presenting a content which users can interact with. Marketers can

reach individual users based on their actions or their geographical location. The

interactive nature of Internet allows marketers to provide instant feedback to the

marketing campaign by recording how end users are interacting with the ads.

 made the Internet an important

advertising mediums, on equal footing with traditional print, TV and radio

advertising.

Internet advertising can be divided into separate business models such as

search and display advertising. Search advertising is associated with ads showed

along the results returned by a search engine and typically it contains text only

ads. Display advertising usually consists of static or dynamic images; it appears on

web pages and is often used for branding (Dreze & Husherr 2003). One advantage

of search over display advertising is that it is easier to understand the interests of

users who provide it directly as search keywords. Understanding interests of

visitors of websites who see display ads is a more subtle task and requires use of

such techniques such as cookies or targeting based on user geographical location.

Effectiveness of advertising campaigns is playing increasingly important role

in online advertising. There are many metrics by which the advertising campaign

can be judged and many ways in which it can be improved. In the ideal situation

the advertising effects can be measured by the increase in sales caused by online

campaign. Often however such a measurement is not possible, especially when

online campaign advertises products which cannot be bought on the Internet. The

effectiveness of advertising depends in the first place on the objectives which were

2 Source Internet World Stats: http://www.internetworldstats.com/stats.htm

5

set for the advertising campaign. Sometimes the role of advertising is to build a

brand image or simply to inform about new product which only indirectly can lead

to higher sales. In this work the main metric used to evaluate the improvement in

delivering the ads will be a click-through ratio (CTR). CTR is the number of times

the ad was clicked divided by the number of times the ad was presented to all

users.

The basic strategy of increasing the effectiveness of ads is based on

targeting, that is controlling which ads are presented to which users. This process

can be achieved in many ways. Examples include such techniques as

geographical targeting which allows for targeting ads based on physical location of

Internet users. It is also possible to target ads based on time or by the context of

the page user visits. For example an advertiser may place car ads on a website

about sport cars. There are dozens of parameters which can be utilised in the ad

optimisation and targeting. However, in this project we will focus on targeting

based only on one parameter which will define similarity between Internet users.

We will assume that users who visited same websites are more similar to each

other than users who visited different websites and that similar users are more

likely to click on the same ads. This assumption will be tested using real data

recorded by one of the biggest online ad networks in United Kingdom.

One of the intrinsic problems in performing real life samples is gigantic

volume of data which needs to be analysed in order to find answers to even the

most straightforward questions. The amount of traffic recorded by big ad networks

often amounts to billions of impressions (ad views) a month and the file sizes

involved in calculations easily go into terabytes. The large number of statistical

data renders most of the standard statistical tools unusable and requires new

approaches. In the case of this project just the data from one day requires analysis

on millions of vectors with over one hundred thousand dimensions each. Because

of this single requirement the method of analysing such immense amount of data

is one of the most important aspects of this project.

6

The goal of this work is to examine whether BT techniques shown to

improve effectiveness of search advertising (Yan et al. 2009) may be applied

successfully to online display advertising. A special technique specific to BT (user

clustering) will be applied to data recorded by a commercial ad network during one

day on 4th of August 2010.

2. Online advertising and behavioural targeting
Ad servers record both ad views (so called impressions) and clicks. More

advanced ad servers are able to gather additional information about each user

such as exact time when user interacted with the ad, her/his geographic location,

the Internet connection speed, resolution of the screen or the type of browsers

used and many more parameters. Online ad networks are becoming increasingly

sophisticated in using wide range of parameters passed by users’ browser to

improve the effectiveness of online advertising. It has been shown that online

advertising has different effects based on user’s gender (Wolin 2003) or nationality

(Brettel 2010). Since it is possible to instruct ad server to behave differently based

on for example user’s gender then trivially we can assume that behavioural

targeting should work in those cases. However, usually it is not possible to get

personal information about Internet users and different means of distinguishing

between Internet users are necessary.

This research will differentiate between users based on their click-stream

activity, that is based on all pages visited by and all clicks resulted from users

actions while seeing ads. Click-stream activity was recorded by the ad server and

is stored in our dataset. There are subtle differences between this approach and

the research done by Yan et al. (2009). First of all in the research by Yan et al.

users are clustered based on the URLs they clicked in the search engine. In our

case we will use URLs of the pages which users visited as opposed to the URLs of

ads on which users clicked. Typically the average CTR in display advertising is

very low (in our dataset it is below 0.1%). Therefore, it is better to use URLs visited

by users to build their profiles rather than the URLs from the ads, otherwise we will

7

lack the data for over 99.9% of all users. Additionally in order to minimise the

number of dimensions in each user’s vector we only use the domain part of each

URL. Thus if a user visited two URLs “www.example.com/page1.html“ and

“www.example.com/page2.html“ both of those URLs are treated as the same

dimension “www.example.com“. We use the words “domain” and “URL”

interchangeably since all the URLs which are analysed in this research are

represented by their domain only.

3. Distributed processing
Most of the computations which need to be performed in this research are

conceptually straightforward. However, the input data is substantially large and the

computations have to be distributed across many servers which makes this task

non-trivial. One way of dealing with distributed data processing is offered by

MapReduce programming model (Dean & Ghemawat 2008) which was originally

developed by Google and is available in several Open Source implementations.

This project will use the Apache Hadoop implementation of MapReduce framework

which is available as Open Source software.

MapReduce is a programming model which simplifies parallelisation of

computations and allows researcher to focus on implementing the specific problem

which needs to be calculated. MapReduce automatically parallelize the

implemented algorithms and hides from us all additional details required for

parallelisation such as fault tolerance, data distribution and load balancing. A

program written in a MapReduce framework may be easily executed on several

machines thus allowing for analysis on large body of data.

A more natural way of analysing data is offered by SQL-like database which

allows asking questions in a SQL-like language. Using SQL is usually a more

convenient way of analysing data than implementing the same logic in one of the

standard programming languages. The same applies to MapReduce as

implementing algorithms in MapReduce framework is typically more complicated

than using SQL queries. This is the reason why this project uses Apache Hive.

8

Hive is a datawarehouse database which works on top of Hadoop and translates

SQL commands into underlying MapReduce procedures which are executed by

Hadoop.

Hadoop and Hive make processing of large quantities of data relatively

easy. However, data mining algorithms such as K-means, Cluto or Canopy

(Kanungo et al. 2000) require separate implementation. This project used Apache

Mahout project which includes K-means algorithm implemented in a MapReduce

Hadoop framework. Mahout is a scalable machine learning library which among

many others implements various clustering algorithms. Mahout allows to distribute

the computing on many servers and in this way it speeds up the total calculations

time.

After selecting the technology required to implement required calculations it

was necessary to find flexible cloud hosting with the support for Hadoop. While it is

possible to install Hadoop on almost any server the preferred solution would be not

to acquire any hardware. This project used Amazon Elastic MapReduce – a

flexible on demand computing in the cloud, which offers support for Hadoop and

works on top of Amazon Elastic Compute Cloud (EC2).

Just how important was the use of MapReduce shows the total time for

running all algorithms. Overall all analysis took over 4000 normalized hours, that is

how much time it would take if all analysis would be performed on one small

Amazon EC2 server (so called m1.small). In other words it would take over 166

days to perform analysis on a single machine. Thanks to cloud computations this

time was compressed into just few weeks.

4. Dataset
The data analysed in this experiment was recorded by one of the leading

UK ad networks (which asked to keep their name confidential). All data was

recorded during one day on August 4th 2010. The dataset contains two types of

users’ actions – impressions and clicks. Every time a person saw an ad on any of

9

the websites within ad network that fact was recorded in database as an

“impression”. Each time someone clicked on an ad that fact was recorded in

database as a “click”. The dataset is rather large as it contains over 80 millions of

impressions records and over 60 thousands of clicks just within single day of

serving online advertising. Overall in a single day over ten millions of unique users

visited over one hundred and forty thousand different websites (counted by

domains) and saw almost two thousands ads. For a comparison the study

published by Yan et al. (2009) analysed 6 millions of records recorded during 7

days.

We filter all records to ensure that internet robots hits are not included in our

dataset. Internet bots, such as web spiders, are software applications that browse

WWW usually in order to provide data for search engines. To filter out all robots

actions all users who recorded more than 100 clicks or impressions are removed

from the dataset. To avoid any privacy concerns we will not store or analyse any

private user information that is any information which can be used to identify users

– such as users IP or their exact geographic location.

The format of both clicks and impressions is exactly the same and is

presented in table 1. The data is saved in hourly data files which are stored in

Amazon Simple Storage Service (S3). Amazon S3 provides a flexible storage

where gigabytes of source data are securely stored and can be easily accessed by

Amazon EC2 cloud computing servers.

Name Sample Data Description

Event Time 2010-08-01 12:30:04 The time when a

user saw an ad

User ID 546c14241e0f1aa5a0e54420b44f4e2f Unique user ID

which is stored in

user browser as a

cookie and can be

10

used to identify a

user.

Ad ID 60041 Unique Id of each

ad

Page URL http://www.example.com/page.html Page where the ad

was presented to

user.

Referrer URL http://www.google.com Page which user

arrived from before

he saw an ad.

Campaign ID 12243 ID of the campaign.

Each campaign

groups one or more

ads which typically

advertise the same

product for the

same advertiser.

Advertiser ID 398 ID of the advertiser.

Each campaign

belongs to one and

only one advertiser.

Typically campaigns

are thematically

similar as they

advertise products

from the same

advertiser.

Table 1. Format of impressions and clicks log used in our experiment

11

4.1 Data representation
In order to perform data mining analysis on our dataset we need a way to

represent it in the numerical format. One way of representing URLs is to count the

frequency of occurrences of each term (in our case a domain part of each URL)

and represent users vectors using term frequency weighting. An improved form of

this representation is a term frequency – inverse document frequency (TF-IDF)

weighting (Salton & Buckley 1988; Papineni 2001).

TF-IDF weight is commonly used in text and data mining. This statistic

measure is used to evaluate how important is a given term in the corpus of all

documents. Term frequency shows how many times a given term occurred in a

given document and an inverse document frequency shows the importance of a

term by dividing number of documents containing a given term by total number of

documents. Inverse document frequency allows us to give less weight to very

common words.

Each user () is represented as a vector of TF-IDF weights:

Where:

• f indicates each user, f is the number of all users

• for each URL, where l is the number of all URLs

• a is a number of times user i visited URL j

• b is a number of all users who visited URL j

Intuitively we can see that if the URL occurs frequently then the document

frequency is large and the inverse document frequency will be small. The inverse

document frequency is normalised with the number of terms. Finally the logarithm

is used in order to decrease the effect of term frequency on the final weight.

12

Representing users as vectors of TF-IDF weights has some computational

drawbacks as each of the over 10 millions of users consists of a vector containing

over one million of weights, one per each URL. This brings some computation

challenges and as a result some further simplifications are required. One way to

minimize the number of dimensions is to group similar URLs by their domain. This

optimisation decreased the number of dimensions to over one hundred thousand

per every vector.

 The side effects of representing users as vectors containing TF-IDF

weights is that most of users did not visit large majority of the URLs and therefore

most of weights in each user vector equal zero. In order to minimize the number of

dimensions kept in each vector we represent those using sparse vectors. Sparse

vector stores only non-zero values assuming that all other values are equal zero. It

is an often case in data mining that vectors have a large number of dimensions

where most of them are zeros and Apache Mahout supports this data

representation.

5. Experimental Design
To ensure that results of our experiment can be compared with the results

achieved in paper publisher by Yan et al. (2009) we tried to keep the symbols and

experimental setup as similar as possible. Some things needed to be changed

since there are few major differences between the data being analysed in this and

the research by Yan et al. (2009). One major difference is that the experiment is

performed on display advertising as opposed to search advertising. Another

difference is that experimental data is recorded during 24 hours of serving ads as

opposed to 1 and 7 days. Running time of programs became so significant that

analysing more that one day worth of data was not feasible.

5.1 Symbols
This section contains definitions of mathematical symbols which are used

across experiment. The set of n advertisements is represented as:

13

Let be a set of such users who displayed or clicked on ad .

The dataset (see table 1) contains UserID and Ad ID which uniquely identify each

user and are used to count how many times each user saw each ad.

A boolean function defines if a user clicked on the ad :

The main goal of a behavioural targeting strategy is to group users into

separate clusters which allow to simulate delivery of different ads to different

groups of users. A distribution of such n users into K clusters is defined as a

function:

Each indicates all users from users set who were grouped into the kth

clustering subset. Such a kth user segment can be represented as:

5.2 Evaluation metrics
Some of the evaluation metrics used in this experiment are common in

online advertising, such as CTR and overall CTR improvement. Additionally this

research will use some of the statistics used by Yan et al. (2009), that is within-

and between-ads similarity, precision, recall and F-measure. Finally we will use

t-test to confirm the significance of our results.

5.2.1 Within- and Between- Ads similarity
The within- and between-ads metrics attempt to answer a question whether

users who clicked the same ads are more similar to each other than to users who

14

clicked different ads. This statement is a basic assumption of any behavioural

targeting technique.

We define the similarity between two user vectors in terms of classic Cosine

similarity:

where <,> is a vector inner-product and || is a vector 2-norm. Since TF-IDF weights

cannot be negative this metric should give us values from the range 0 to 1.

Given the above Cosine similarity measure it is possible to define the within-

and between similarities metrics. The within ad similarity is an averaged sum of

Cosine similarity of all users who clicked given ad . For each ad we define a

within-ads user similarity as:

where is a number of users who clicked ad .

Between ads similarity measure resembles the within-ads similarity

definition with the difference that it measures the similarity between users who

clicked different ads. The between ads similarity answers the question how similar

are users who clicked different ads. Between ads similarity is defined as:

Where:

• is a number of users who clicked ad

• is number of users who clicked ad .

15

Finally, using within and between ads similarity we define a ratio between

 and as:

The R measure will increase with the increase of within-ads similarity and

decrease if the between-ads will be bigger. Therefore the bigger the R measure

the more likely that our behavioural targeting strategy achieved its desired results.

It is possible that the similarity between some ads () may equal 0. In those

rare cases we may not be able to calculate the R measure. We introduced

therefore a new parameter which holds a very small value (d = 0.001) just to

ensure that the division in our case is always possible. It is worth noting that Yan et

al. (2009) do not mention any issues with calculating R in all cases.

Finally we use , and R to evaluate how similar are all ads within the

dataset. In order to do so we will calculate the average within and between ad

similarity:

 and

The total averaged ratio R is calculated as an squared average of all ads ratios R:

5.2.2 Ads Click-Through Rate
The CTR measure is the most common performance indicator of any click-

based advertising campaign. Typically a high CTR ratio indicates that users are

more interested in a given ad and are paying more attention to advertising

message (Joachims et al. 2005). Many advertising campaigns use more

sophisticated indicators such as measures of whether Internet users “converted”

16

into customers. That is if a user after clicking or seeing an ad acted in a specific

way, for example whether s/he bought the product being advertised.

We define CTR ratio of an ad as a number of users who clicked the ad

divided by number of users who clicked or displayed it:

To see if the user segmentation can increase an ad CTR we define the CTR

of ad over user cluster as:

where is the number of users in kth cluster After segmenting users

in k clusters we check the CTR of each ad per each cluster to see if delivering the

ad only to given cluster would improve its CTR.

After calculating the CTR for each ad-cluster pair we answer the question

just how much the overall CTR can be increased by targeting users to different

user groups. This can be done by taking the maximum CTR of each ad from all

clusters we can possibly deliver it to and averaging the resulting sum:

where is user segment which has a highest CTR for a given ad :

It is important to note that it is not guaranteed that the user segment with the

highest CTR for a given ad has the biggest number of impressions for that ad.

We will discuss implication of this assumption later in the discussion section.

17

5.2.3 Precision, Recall and F-measure
There are few ways in which we can assess the quality of CTR

improvement. Calculating precision and recall is a common way to check the

quality of captured data (Rijsbergen 1979). If we consider users who clicked on

ads as positive cases and users who saw the ad but did not click on it as a

negative case we can calculate the precision as:

The precision in this case is equal to the number of users from given cluster

who clicked the ad divided by the number of all users (from cluster) who saw

given ad which is the CTR of an ad in given user segment.

Recall tells us how much percent of all users who clicked an ad are within

given user segment. It is defined as a number of users from cluster who clicked

an ad divided by the number of all users from an entire dataset who clicked the

same ad:

where is the number of users in our dataset.

A high precision will indicate that segments are tightly clustered around

users who clicked given ads while recall will show us how much of all the clicks on

a given ad where included in a given cluster.

We can further combine both of these measures into a harmonic mean of

precision and recall called F-measure:

The F-measure (Hripcsak & Rothschild 2005) shows how well our clustering is

performing for a given ad and a cluster .

18

The F-measures from all clusters and ads can be summed into a total F measure

averaged for all ads and best performing clusters:

6. Implementation details
 Large datasets are common in Internet advertising yet it is still a difficult

task to perform data mining on data which contains many billions of records. A

researcher who is analysing such datasets needs to use scalable technology in

order to process such quantities of data. Most of the technologies used to

implement data mining algorithms in this project are focused on distributed

processing using MapReduce framework.

The programming languages of choice are Python for text processing and

preparation of input vectors, Hive SQL for high level data transformations and Java

for implementing k-means clustering.

K-means clustering is a standard clustering method (Kanungo et al. 2000)

which can be used for clustering numerical vectors. K-means partitions vectors into

k clusters by assigning each vector to the closest cluster centre. Initial cluster

centres can be selected randomly in the first iteration of the algorithm or can be

provided to Mahout as a separate set of vectors. The k-means algorithm calculates

new “means” vectors by calculating a centroid within each cluster and in next

iteration it repeats a procedure by assigning each vector to new cluster centers.

6.1 Servers setup

All computations were executed on Amazon Elastic Compute Cloud (EC2)

which provides flexibility in choosing servers size and can dynamically allocate

time required to execute all experiments.

19

Data mining analysis were performed on five high-CPU instances with the

following configuration:

7 GB of memory

20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute Units each)

1690 GB of storage

64-bit platform

All servers are based on Debian Linux and have installed Hadoop v 0.20.

6.1 Dataset
The data used in the experiment is stored in the tab separated format which

needed to be imported into Hive database for further analysis. Hive represents

data in easy to use table format, see listings 1 and 2. Note that both clicks and

impressions have the same format.

CREATE EXTERNAL TABLE event_clicks (

 event_time string,

 user_id string,

 banner_id int,

 page_url string,

 referrer_url string,

 campaign_id int,

 advertiser_id int

)

 PARTITIONED BY(event_date string)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

Listing 1. Clicks Hive table definition

CREATE EXTERNAL TABLE event_impressions (

 event_time string,

 user_id string,

 banner_id int,

20

 page_url string,

 referrer_url string,

 campaign_id int,

 advertiser_id int

)

 PARTITIONED BY(event_date string)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

Listing 2. Impressions Hive table definition

6.2 Building user vector
To create users’ vectors we need to calculate the TF-IDF weights for each

user-domain pair. In order to do so we need to create a function which retrieves

the domain name from every URL.

import sys

from urlparse import urlparse

def getDomain():

 for line in sys.stdin:

 line = line.strip()

 if line == "":

 continue

 (components) = line.split("\t")

 url = components[0]

 parts = urlparse(url)

 output = parts.netloc

 if len(components) > 1:

 isFirst = True

 for component in components:

 if isFirst:

 isFirst = False

 continue

21

 output += '\t' + component

 print output

if __name__ == "__main__":

 getDomain()

Listing 3. Python file domain.py used for transforming URLs to domains

We create first a helper table which contains user Ids, domain names and

number of times each user have seen any ad under given domain. Hive does not

offer a function which can retrieve domain components from the URL names and

in order to do so a custom user defined function needed to be created (see listing

3).

CREATE EXTERNAL TABLE users_urls_impressions (

 user_id STRING,

 url STRING,

 impressions INT

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE users_urls_impressions

SELECT user_id, domain, COUNT(1) AS impressions

FROM (

 FROM event_impressions e

 MAP e.page_url, e.user_id

 USING 'python /opt/etl/project/python/domain.py'

 AS domain, user_id

) domains

GROUP BY user_id, domain;

Listing 4. Hive SQL for retrieving list of domains per each user with the

corresponding number of impressions.

22

Before proceeding to calculate matrix we need to calculate the total

number of impressions in each of the domains.

CREATE EXTERNAL TABLE urls_impressions (

 url string,

 impressions int

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE urls_impressions

SELECT domain, COUNT(1) AS impressions

FROM (

 FROM event_impressions e

 MAP e.page_url

 USING 'python /opt/etl/project/python/domain.py'

 AS domain

) domains

GROUP BY domain;

Listing 5. Hive SQL query for calculating number of impressions in each of the
domains

Finally we are ready to calculate TF-IDF weights per each user-domain pair.

CREATE EXTERNAL TABLE u_matrix_impressions (

 user_id string,

 url string,

 u_ij double

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE u_matrix_impressions

SELECT u.user_id, u.url, (LOG(u.impressions)+1) *

LOG(#domains/d.impressions)

FROM users_urls_impressions u

23

JOIN urls_impressions d ON d.url = u.url;

Where number of domains (#domains) can be calculated as:

select count(distinct url) from users_urls_impressions;

Selecting final set of TF-IDF values to external file:

hive -e 'SELECT * FROM u_matrix_impressions ORDER BY user_id' >

./u_matrix_impressions.txt

Listing 6. Calculating TF-IDF values.

After calculating TF-IDF values and exporting them into local file we still

need to perform additional transformation in order to shape that data into the final

 vector. These calculations are done with the use of the python script from the

listing 7.

import sys

from itertools import groupby

import numpy

import optparse

import csv

def getReader(filePath):

 reader = csv.reader(open(filePath, "rb"), delimiter="\t",

quoting=csv.QUOTE_NONE)

 return reader

def getUrlsAsSortedArray(fromFilePath):

 urlsDict = getFirstColumnData(fromFilePath)

 urls = sortValues(urlsDict)

 i = 0

 for urlKey in urls:

 urlsDict[urlKey] = i

 i += 1

24

 return urls, urlsDict

def getFirstColumnData(fromFilePath):

 urlsDict = {}

 reader = getReader(fromFilePath)

 for row in reader:

 url = row[1]

 urlsDict[url] = url

 return urlsDict

def sortValues(values):

 keys = values.keys()

 keys.sort()

 return map(values.get, keys)

def containsAnyValue(string, values):

 return True in [value in string for value in values]

def pivotData(inputFilePath, outputFilePath):

 csvFile = open(outputFilePath, 'w')

 csvWriter = csv.writer(csvFile, delimiter=" ",

 quotechar='', quoting=csv.QUOTE_NONE)

 urls, urlsDict = getUrlsAsSortedArray(inputFilePath)

 lastUserId = None

 vector = []

 userUrls = {}

 reader = getReader(inputFilePath)

 for row in reader:

 userId = row[0]

 if (userId == "NULL"):

 continue

 if lastUserId != userId and lastUserId != None:

 vector.append(lastUserId) # user ID

 vector.append(len(urls)) # size of the vector

25

 # create sparse vector

 for urlKey in userUrls:

 if not containsAnyValue(userUrls[urlKey], '\|,='):

 vector.append(str(urlsDict[urlKey]) + ":"

 + userUrls[urlKey])

 try:

 csvWriter.writerow(vector)

 except:

 print str(vector)

 vector = []

 userUrls = {}

 userUrls[row[1]] = row[2]

 lastUserId = userId

 csvFile.close()

if __name__ == '__main__':

 usage = "usage: %prog inputFile outputFile"

 parser = optparse.OptionParser(usage=usage)

 options, args = parser.parse_args()

 if len(args) == 2:

 inputFile = args[0]

 outputFile = args[1]

 else:

 print usage

 sys.exit(1)

 pivotData(inputFile, outputFile)

Listing 7. Python script (pivot_data.py)

Script from listing 7 creates a large file (many GB in size) which contains over one

hundred thousand dimensions (one dimension for each of the domains) and over

10 millions of vectors.

26

6.3 Clustering user vectors
In the clustering phase we partition users’ vectors into subsets where data

in each subset is similar according to some defined metric. Yan et al. (2009) do not

specify which metric was used in creating clusters. We assume here that the same

metric which is used for calculating the similarity between and within-ads is used

for clustering, that is the Cosine metric.

In order to perform clustering on the dataset of this size we use Apache

Mahout – a data mining tool which is designed specifically to work in distributed

environment across multiple CPUs or across clusters of machines. In this case

Mahout performs all calculations running on Amazon EC2 cluster distributed

across five large servers, each of them with 8 cores.

We divide clustering process into three parts – preparation of the data,

clustering and analyzing the output. Data preparation is an important and

necessary step. Mahout understands only specific format and therefore our data

needs to be transformed into special vectors before we can proceed with the

clustering. We transform data into Mahout sparse vectors to store only non-zero

values and in this way save disk space and speed up calculations.

public class InputMapper extends Mapper<LongWritable, Text, Text,

VectorWritable> {

 private static final Pattern SPACE = Pattern.compile(" ");

 private static final Pattern COLON = Pattern.compile(":");

 private Constructor<?> constructor;

@Override

protected void map(LongWritable key, Text values, Context context) throws

IOException, InterruptedException {

 String[] numbers = InputMapper.SPACE.split(values.toString());

 SequentialAccessSparseVector sparseVector = null;

 String keyName = "";

27

 int vectorSize = -1;

 for (String value : numbers) {

 if (keyName.equals("")) {

 keyName = value;

 continue;

 } else if (vectorSize == -1) {

 vectorSize = Integer.parseInt(value);

 sparseVector = new SequentialAccessSparseVector(vectorSize);

 continue;

 } else if (value.length() > 0) {

 String[] valuePair = InputMapper.COLON.split(value);

 if (!valuePair[1].equals("NULL")) {

 sparseVector.setQuick(Integer.parseInt(valuePair[0]),

Double.valueOf(valuePair[1]));

 }

 }

 }

 if (sparseVector != null) {

 try {

 Vector result = new NamedVector(sparseVector, keyName);

 VectorWritable vectorWritable = new VectorWritable(result);

 context.write(new Text(String.valueOf(vectorSize)),

vectorWritable);

 } catch (Exception e) {

 throw new IllegalStateException(e);

 }

 }

 }

}

Listing 8. Mahout code, written in Java, for transforming the sparse vector into
Mahout sequence.

Once the data is correctly prepared for Mahout analysis we can execute the

Mahout clustering mechanism.

28

$python /opt/etl/project/python/pivot_data.py ./u_matrix_impressions.txt

./pivoted_impressions.txt

hadoop fs -put ./pivoted_impressions.txt testdata

$ mahout org.apache.mahout.clustering.codes.kmeans.PrepareVector --input

testdata --output sequencedata

$ mahout org.apache.mahout.clustering.codes.kmeans.Job

--input sequencedata --distanceMeasure

org.apache.mahout.common.distance.CosineDistanceMeasure

--output output -k 160 -x 50 --clusters random-clusters

--clustering –overwrite

$ mahout org.apache.mahout.clustering.codes.kmeans.ClusterDumper

-p /user/hadoop/output/clusteredPoints

-s /user/hadoop/output/clusters-5 -o ./final-clusters.txt

hive -e 'LOAD DATA LOCAL INPATH "/mnt/project/mahout/final-clusters.txt"

OVERWRITE INTO TABLE u_cluster'

Listing 9. Mahout command line parameters for executing clustering and dumping

clustered data. We group all vectors into 160 clusters using 50 iterations.

At this stage we are ready to perform clustering on users vectors. Listing 9

shows all the commands which are required to prepare sparse vectors, execute

clustering process, dump the resulting clustering and import final clusters back into

Hive for further analysis. Note that due to the size limitations of this paper only the

most important source code from modified files is included here. Specifically the

ClusterDumper and the kmeans.Job classes needed to be modified in order to

ensure that Mahout is able to perform analysis on our large dataset. Performing all

analysis in the clustering step was the most computationally expensive part of the

entire experiment as it took about 2 hours per each of the 50 clustering iterations.

29

6.4 CTR analysis on users clusters
In the previous step we clustered users using Apache Mahout project and

then we imported those clusters into “u_cluster” table (see listing 10 for definition

of “u_cluster”).

CREATE EXTERNAL TABLE u_cluster (

 user_id STRING,

 cluster_id INT

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

CREATE EXTERNAL TABLE ads_nonopt_ctr (

 banner_id INT,

 ctr DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

CREATE EXTERNAL TABLE ads_clusters_ctr (

 banner_id INT,

 cluster_id INT,

 ctr DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

CREATE EXTERNAL TABLE ads_opt_ctr (

 banner_id INT,

 ctr DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

30

Listing 10. Hive definition of tables related to CTR calculations

We calculate the CTR of all ads, that is the CTR without any optimisation.

First we calculate “non-optimized” CTR per each ad
INSERT OVERWRITE TABLE ads_nonopt_ctr

SELECT i.banner_id, c.clicks / i.impressions AS ctr

FROM (

 SELECT COUNT(user_id) AS impressions, banner_id

 FROM event_impressions

 GROUP BY banner_id

) i LEFT OUTER JOIN

(

 SELECT COUNT (user_id) AS clicks, banner_id

 FROM event_clicks

 GROUP BY banner_id

) c ON (i.banner_id = c.banner_id);

Then we calculate CTR per each ad-cluster pair:

INSERT OVERWRITE TABLE ads_clusters_ctr

SELECT i.banner_id, i.cluster_id, c.clicks / i.impressions AS ctr

FROM (

 SELECT COUNT(i.user_id) AS impressions, i.banner_id, cl.cluster_id

cluster_id

 FROM event_impressions i JOIN u_cluster cl ON (i.user_id =

cl.user_id)

 GROUP BY i.banner_id, cl.cluster_id

) i LEFT OUTER JOIN

(

 SELECT COUNT(c.user_id) AS clicks, c.banner_id, cl.cluster_id

cluster_id

 FROM event_clicks c JOIN u_cluster cl ON (c.user_id = cl.user_id)

 GROUP BY c.banner_id, cl.cluster_id

) c ON (i.banner_id = c.banner_id and i.cluster_id = c.cluster_id)

WHERE i.impressions > 50;

31

Calculate CTR of optimized ads:
INSERT OVERWRITE TABLE ads_opt_ctr

SELECT banner_id, MAX(ctr) as max_ctr

FROM ads_clusters_ctr

GROUP BY banner_id;

Finally we calculate total CTR improvement:
SELECT SUM(d.delta_a) / COUNT(d.delta_a), COUNT(d.delta_a)

FROM (

 SELECT (o.ctr - no.ctr) / no.ctr AS delta_a

 FROM ads_nonopt_ctr no JOIN ads_opt_ctr o ON (no.banner_id =

o.banner_id)

) d;

Listing 11. CTR calculations performed by Hive

The code from listing 11 performs CTR analysis, calculates optimised and non-

optimised CTR and the total CTR improvement.

6.5 Within- and between-ads user similarity
The within-ads and between-ads similarity is calculated only between users

who ever clicked any ads. The goal of this analysis is to check if the users who

clicked the same ads are move similar to each other than users who clicked

different ads. We do not reuse clustering information in this part of experiment.

In order to calculate similarity between users we select only those users

who clicked on any ad and calculate cosine similarity between them. Only around

0.02% of all users in our dataset clicked on ads and therefore the similarity

analysis should be computationally less expensive and we can perform it in Python

(see listing 12).

import sys

import math

import optparse

32

import csv

def getReader(filePath, delimiter=" "):

 reader = csv.reader(open(filePath, "rb"), delimiter=delimiter,

quoting=csv.QUOTE_NONE)

 return reader

def getOneColumnData(fromFilePath, delimiter=" ", columnNumber = 0):

 dict = {}

 reader = getReader(fromFilePath, delimiter)

 for row in reader:

 record = row[columnNumber]

 dict[record] = record

 return dict

def dot(v1, v2):

 sum = 0.0

 for key in v1:

 # vectors are sparse

 if (v2.has_key(key)):

 sum += v1[key] * v2[key]

 return sum

def norm(v):

 sum = 0.0

 for key in v:

 sum += v[key] * v[key]

 return math.sqrt(sum)

def cosineSimilarity(v1, v2):

 return dot(v1, v2) / (norm(v1) * norm(v2))

def string2dict(vector):

 result = {}

 i = 0

 for value in vector:

33

 if i < 2: i += 1; continue

 if isinstance(value, str):

 s = value.split(':')

 result[int(s[0])] = float(s[1])

 return result

def filterClickUsers(inputFilePath, usersFile):

 tempFile = "/tmp/click_users_vectors.txt"

 csvFile = open(tempFile, 'w')

 csvWriter = csv.writer(csvFile, delimiter=" ",

 quotechar='', quoting=csv.QUOTE_NONE)

 usersDict = getOneColumnData(usersFile)

 reader = getReader(inputFilePath)

 for row in reader:

 userId = row[0]

 if userId in usersDict:

 csvWriter.writerow(row)

 csvFile.close()

 return tempFile

def runJob(inputFilePath, usersFile, outputFilePath):

 csvFile = open(outputFilePath, 'w')

 csvWriter = csv.writer(csvFile, delimiter="\t",

 quotechar='', quoting=csv.QUOTE_NONE)

 usersDict = getOneColumnData(usersFile)

 # select only those users who we want to analyse

 filteredUsersPath = filterClickUsers(inputFilePath, usersFile)

 readerLeft = getReader(filteredUsersPath)

 for rowLeft in readerLeft:

 userIdLeft = rowLeft[0]

 if userIdLeft not in usersDict:

 continue

34

 # calculate similarity between this user and all next users in

the file

 readerRight = getReader(filteredUsersPath)

 for rowRight in readerRight:

 userIdRight = rowRight[0]

 if (userIdLeft == userIdRight) or (userIdRight not in

usersDict):

 continue

 # remove user IDs before dot and norm vector calculations

 rowLeft[0] = rowRight[0] = 0.0

 sim = cosineSimilarity(string2dict(rowLeft),

string2dict(rowRight))

 # save the output (save only non-zero results)

 if sim != 0.0:

 vector = [userIdLeft, userIdRight, sim]

 csvWriter.writerow(vector)

 csvFile.close()

if __name__ == '__main__':

 usage = "usage: %prog inputFile listOfUsers outputFile"

 parser = optparse.OptionParser(usage=usage)

 options, args = parser.parse_args()

 if len(args) == 3:

 inputFile = args[0]

 usersFile = args[1]

 outputFile = args[2]

 else:

 print usage

 sys.exit(1)

 runJob(inputFile, usersFile, outputFile)

Listing 12. Python script (similarity.py) for calculating cosine similarity between

user vectors

35

In order to perform cosine similarity calculations we need to select all users

who ever clicked on any ad. Listing 13 shows how to select all such users and how

to call similarity.py script in order to retrieve the cosine similarity pairs.

Select list of users who clicked on any ad

$ hive -e 'SELECT DISTINCT user_id FROM event_clicks' > ./click_users.txt

Calculate similarities between users:

$ python /opt/etl/project/python/similarity.py ./pivoted_impressions.txt

./click_users.txt ./users_cossim.txt

Import user-pairs cosine similarities back into hive

CREATE EXTERNAL TABLE users_cossim (

 user_id1 STRING,

 user_id2 STRING,

 cossim DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

LOAD DATA LOCAL INPATH '/mnt/project/users_cossim.txt' OVERWRITE INTO

TABLE users_cossim;

Listing 13. Selecting “click users” and calculating cosine similarity with the use of

similarity.py script

After calculating cosine similarity between all pairs of users we can calculate

and .

CREATE EXTERNAL TABLE users_cossim_within (

36

 banner_id INT,

 sw DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE users_cossim_within

SELECT banner_id, 2 / count(uc.cossim) * (count(uc.cossim) - 1) *

sum(cossim) AS sw

FROM (

 SELECT uc.user_id, uc.banner_id, avg(uc.cossim) AS cossim

 FROM (

 SELECT ec.user_id, ec.banner_id, cossim

 FROM event_clicks ec JOIN users_cossim uc1 ON (ec.user_id =

uc1.user_id1)

 UNION ALL

 SELECT ec.user_id, ec.banner_id, cossim

 FROM event_clicks ec JOIN users_cossim uc2 ON (ec.user_id =

uc2.user_id2)

) uc

 GROUP BY uc.banner_id, uc.user_id) uc

GROUP BY banner_id;

Calculate total :

SELECT SUM(sw) / COUNT(1) AS total_sw FROM users_cossim_within;

Listing 14. Hive calculations

Although it is possible to use subselects in Hive it is often necessary to use

many additional helper tables for storing intermediate results. Listing 15 shows

such additional tables which are aiding us in calculating total .

CREATE EXTERNAL TABLE banner_users (

 banner_id INT,

 user_id STRING

37

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE banner_users

SELECT banner_id, user_id

FROM event_clicks

GROUP BY banner_id, user_id;

CREATE EXTERNAL TABLE banner_pair_users (

 banner_id1 INT,

 banner_id2 INT,

 user_id1 STRING,

 user_id2 STRING

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE banner_pair_users

SELECT bu1.banner_id, bu2.banner_id, bu1.user_id, bu2.user_id

FROM banner_users bu1 JOIN banner_users bu2;

CREATE EXTERNAL TABLE banner_pair_users_cossim (

 banner_id1 INT,

 banner_id2 INT,

 user_id1 STRING,

 user_id2 STRING,

 cossim DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE banner_pair_users_cossim

SELECT bpu.banner_id1, bpu.banner_id2, bpu.user_id1, bpu.user_id2,

uc.cossim

38

FROM banner_pair_users bpu JOIN users_cossim uc ON (bpu.user_id1 =

uc.user_id1 AND bpu.user_id2 = uc.user_id2);

CREATE EXTERNAL TABLE banner_distinct_users_count (

 banner_id INT,

 number_of_users INT

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE banner_distinct_users_count

SELECT banner_id, COUNT(distinct user_id)

FROM event_clicks

GROUP BY banner_id;

CREATE EXTERNAL TABLE banner_cossim_between_sum (

 banner_id1 INT,

 banner_id2 INT,

 cossim_sum DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE banner_cossim_between_sum

SELECT bpuc.banner_id1, bpuc.banner_id2, SUM(bpuc.cossim)

FROM banner_pair_users_cossim bpuc

GROUP BY bpuc.banner_id1, bpuc.banner_id2;

Calculate for each banner pairs:

CREATE EXTERNAL TABLE banner_cossim_between (

 banner_id1 INT,

 banner_id2 INT,

 cossim DOUBLE

)

39

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE banner_cossim_between

SELECT banner_id1, banner_id2, cossim_sum / (bduc1.number_of_users *

bduc2.number_of_users) AS bs

FROM banner_cossim_between_sum bcbs

JOIN banner_distinct_users_count bduc1 ON (bcbs.banner_id1 =

bduc1.banner_id)

JOIN banner_distinct_users_count bduc2 ON (bcbs.banner_id2 =

bduc2.banner_id);

Number of distinct banners (#db):

SELECT COUNT(distinct banner_id) AS db from event_clicks;

and finally we calculate total :

SELECT SUM(cossim)/(#db * #db) from banner_cossim_between;

Listing 15. Hive SQL calculations for

Note that and are stored in separate tables which makes it easy to

retrieve those values later in order to perfom t-test between those values (Cox &

Hinkley 1974). After calculating and we can calculate the R measure, see

listing 16.

CREATE EXTERNAL TABLE banner_r (

 banner_id1 INT,

 banner_id2 INT,

 r DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

We add 0.001 in order to avoid dividing by zero

40

INSERT OVERWRITE TABLE banner_r

SELECT sb.banner_id1, sb.banner_id2, (sum(sw1.sw) + SUM(sw2.sw)) + 0.001

/ (2 * SUM(sb.cossim) + 0.001) AS r

FROM banner_cossim_between sb

JOIN users_cossim_within sw1 ON (sw1.banner_id = sb.banner_id1)

JOIN users_cossim_within sw2 ON (sw2.banner_id = sb.banner_id2)

GROUP BY sb.banner_id1, sb.banner_id2;

SELECT MIN(sw) FROM users_cossim_within WHERE sw != 0;

SELECT COUNT(DISTINCT banner_id) FROM event_clicks;

Finally we calculate total R:

select count(distinct banner_id1) as db FROM banner_r;

select sum(r)/(#db * #db) from banner_r;

Listing 16. Hive R calculations

6.6 F-measure, Precision and Recall
In order to calculate F-measure we need first to calculate precision and

recall. All these measure will help us to evaluate how effective was the

improvement in CTR. First we calculate the recall, see listing 17.

CREATE EXTERNAL TABLE ad_all_clusters_rec (

 ad_id INT,

 cluster_id INT,

 rec DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE ad_all_clusters_rec

SELECT cc.banner_id, cc.cluster_id, cc.clicks / cl.clicks AS rec

41

FROM

(

 SELECT COUNT(c.user_id) AS clicks, c.banner_id, cl.cluster_id

cluster_id

 FROM event_clicks c JOIN u_cluster cl

 GROUP BY c.banner_id, cl.cluster_id

 ON (c.user_id = cl.user_id)

) cc JOIN

(

 SELECT COUNT(user_id) AS clicks, banner_id

 FROM event_clicks

 GROUP BY banner_id

) cl

ON (cc.banner_id = cl.banner_id);

We get the optimized clusters (g*)

CREATE EXTERNAL TABLE ads_clusters_rec (

 ad_id INT,

 cluster_id INT,

 rec DOUBLE

)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE ads_clusters_rec

SELECT ac.ad_id, acl.cluster_id, ac.rec

FROM ad_all_clusters_rec ac

JOIN ads_opt_clusters acl ON (ac.ad_id = acl.banner_id and ac.cluster_id

= acl.cluster_id);

Calculate total average Recall:

SELECT SUM(rec) / COUNT(1) FROM ads_clusters_rec;

Listing 17. Hive Recall calculations

42

After recall we calculate precision, that is a measure to present only relevant

items. In our case it is simply equal the CTR from each clusters.

Create table which contains ads clusters with maximum CTR:

CREATE EXTERNAL TABLE ads_opt_clusters (

 banner_id INT,

 cluster_id DOUB:E

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE ads_opt_clusters

SELECT acc.banner_id, acc.cluster_id

FROM ads_clusters_ctr acc join ads_opt_ctr aoc ON (acc.banner_id =

aoc.banner_id)

WHERE acc.ctr = aoc.ctr;

First calculate precision just for optimised clusters:

CREATE EXTERNAL TABLE ads_clusters_prec (

 banner_id INT,

 cluster_id INT,

 prec DOUBLE

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE ads_clusters_prec

SELECT ac.banner_id, acl.cluster_id, ac.ctr AS prec

FROM ads_opt_ctr ac

JOIN ads_opt_clusters acl ON (ac.banner_id = acl.banner_id);

Calculate total average Prec:

SELECT SUM(prec) / COUNT(1) FROM ads_clusters_prec;

Listing 18. Hive Precision calculations

43

At this stage we are ready to calculate the F-measure which combines both

precision and recall in the harmonic mean.

CREATE EXTERNAL TABLE ads_clusters_f (

 ad_id INT,

 cluster_id INT,

 f DOUBLE

)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t';

INSERT OVERWRITE TABLE ads_clusters_f

SELECT acp.banner_id, acp.cluster_id, (2 * acp.prec * acr.rec) /

(acp.prec + acr.rec) AS f

FROM ads_clusters_prec acp

JOIN ads_clusters_rec acr ON (acr.ad_id = acp.banner_id AND

acr.cluster_id = acp.cluster_id);

Calculate total F measure:
select sum(f) / count(1) from ads_clusters_f;

Listing 19. Hive F-measure calculations

7. Results
The results were calculated for 160 clusters of users. The research done by

Yan et al. (2009) calculated results for 4 groups of clusters of 20, 40, 80 and 160

clusters each and achieved best CTR improvement for 160 clusters. Due to limited

computational resources and much larger data set this experiment was able to

calculate the results only for 160 clusters.

44

7.1 Within- and between-ads user similarity
Similarities and were calculated in order to assess if users who

clicked the same ads (within-ads similarity) are indeed more similar to each other

than users who clicked different ads (between-ads similarity). Table 2 present

results of calculating and .

 R

80 millions records 0.259 0.041 1.4

Table 2. Within- and between-ads user similarity.

From the results in table 2 we can see that total averaged is much higher

than total . An independent t-test confirmed the difference to be highly significant

.

The results confirmed our initial hypothesis that users who clicked the same

ads are more similar to each other than users who clicked different ads. However,

 in our case is almost twice as big as the same results from the research by Yan

et al. (2009). That suggests that the users who clicked different ads are still quite

similar to each other. This difference may be caused by the fact that in this

experiment users are clustered based on the domains they visited and not based

on the URLs. Therefore users who visited different URLs are often within the same

domain and therefore are more likely to be more similar to each other. High may

explain rather low R measure which is an order of magnitude lower than the results

achieved by Yan et al. (2009).

As mentioned previously the R measure calculation uses additional

parameter in order to ensure that all R values are possible to calculate. The

resulting R does not change much (variations within 0.1%) when d is changed from

0.001 to 0.0001 so we can assume that this parameter is safe to use and it doesn’t

change the final results significantly.

45

7.2 CTR improvement
From the perspective of the ad network one of the most important

evaluation metric is the CTR improvement. Clustering users into 160 clusters

improved overall CTR by 909%. This number is approximately within the range of

improvement achieved by Yan et al. (2009), however it is rather high. One of the

possible explanations is that search advertising CTR is typically much higher than

display advertising CTR and therefore it may be easier to improve display

advertising lower CTR.

 CTR improvement

K-means
(160 segments)

909%

Table 3. Total CTR improvement

It is important to discuss how exactly this improvement was calculated. The

total averaged CTR averages all best CTR achieved for every ad in all clusters and

therefore we do not take into account how much of the ads were delivered into

such a user segment. It is possible that some segments may capture only few

percents of all impressions and clicks of a given ad and still can yield the highest

CTR. In order to minimise such a possibility our calculations ensured that each ad-

cluster has at least 50 impressions before it is included in the final CTR

improvement measure.

It would be an interesting project to further explore the possibilities of

improving the total CTR with the restriction that each ad needs to deliver specific

number of impressions.

7.3 Precision, Recall and F-measure
Table 4 presents information on recorded precision, recall and F-measure on 160

clusters.

46

K-means
(160 segments)

Precision 83.4%

Recall 8.07%

F-measure 0.12

Table 4. Precision, recall and F-measure.

K-means on 160 clusters achieved much higher precision than Yan et al.

(2009) but also much lower recall. Small recall indicates that only about 8% of all

impressions were captured in the clusters with highest CTR. In other words even

though the improvement in CTR was large it contained only 8% of all clicks

recorded in the dataset. It should be possible to decrease the CTR on the cost of

recall and yield lower CTR improvements but applied to a higher number of clicks.

8. Discussion
This study considered the impact of behavioural targeting techniques on

online display advertising. More specifically, we investigated whether simulating

delivery of traffic to chosen clusters will increase the overall CTR of all ads. We

examined the data using different evaluation metrics such as: user similarity,

precision, recall, F-measure and we used the t-test to confirm the significance of

the results. The experimental design was implemented with the help of scalable

data mining libraries which allowed successful analysis of large body of data.

This study was motivated by Yan et al. (2009) which found that behavioural

targeting in search advertising can yield up to 670% increase in the overall CTR.

We performed the systematic study of clickstream logs of a commercial ad network

in which we found that the overall CTR can be increased as much as 909%.

This research shows that it is possible to achieve higher CTR by the means

of clustering users. However there are a few issues with focusing only on the

overall CTR. In calculating CTR improvement we ignore how much impressions

were delivered to each cluster. In the display advertising model advertisers

typically pay per number of impressions and not per clicks. Therefore, to effectively

47

use these techniques in real-life we should take into account not only CTR but the

ad network contracts as well, that is a number of ad views which ad network

agreed to deliver.

Yet another issue is that the data was clustered and tested on the same

day. This shows theoretical improvements given that we would know to which

clusters users should be delivered to. However, in reality the users would be

clustered on the data from the previous day and ads would be targeted to such

clusters the day after. The same applies to choosing which clusters yield highest

CTR. It is relatively easy to check the CTR for each ad-cluster pairs but predicting

beforehand which clusters are the best candidates would require additional work.

The results of our current study suggest that the behavioural targeting has

an enormous potential to improve the effectiveness of online display advertising.

While the clustering method used in this experiment was limited to a post-hoc

analysis of data collected within a single day, it is highly probable that a similar

model would perform very well in reality. We base this conclusion on previous

research that showed similar improvements following BT applied to search

advertising (Yan et al. 2009). Furthermore, our model was rather simple; it should

be possible to achieve even better results using more advanced user

segmentation methods.

48

9. References

Brettel, M., & Spilker-Attig, A. (2010). Online advertising effectiveness: a cross-

cultural comparison. Journal of Research in Interactive Marketing 4(3), 176-

196.

Chen, Y., Pavlov, D., & Canny, J.F. (2009). Large-scale behavioral targeting. In

KDD '09: Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, 209-218.

Cox, D.R., & Hinkley, D.V. (1974). Theoretical statistics. Chapman and Hall,

London.

Dreze, X., & Hussherr, F.X. (2003). Internet advertising: is anybody watching?

Journal of Interactive Marketing, 17(4), 8-23.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on

Large Clusters. In Proceedings of the Sixth Symposium on Operating System

Design and Implementation, 137–150.

Hripcsak, G., & Rothschild, A.S. (2005). Agreement, the F-Measure, and reliability.

Information Retrieval Journal of the American Medical Informatics Association,

2, 296-298.

Joachims, T., Granka, L., Pan, B., Hembrooke, H. & Gay, G. (2005) Accurately

interpreting clickthrough data as implicit feedback. Proceedings of the 28th

annual international ACM SIGIR conference on Research and development in

information retrieval, 154-161.

Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., & Wu. A. (2000).

An efficient K-means clustering algorithm: Analysis and implementation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24, 881-892.

49

Karypis., G. CLUTO: a software package for clustering high-dimensional data sets.

University of Minnesota, Department of Computer Science.

Manchanda, P., Dubé, J., Goh., K.Y., & Chintagunta, P.K. (2006). The Effect of

Banner Advertising on Internet Purchasing. Marketing Research, 43(1).

Papineni, K. (2001). Why inverse document frequency? In NAACL '01: Second

meeting of the North American Chapter of the Association for Computational

Linguistics on Language technologies 2001, 1-8.

Pincas, S. & Loiseau, M. (2008). A History of Advertising, Taschen, Los Angeles.

Ratnaparkhi, A. (2010). Finding predictive search queries for behavioral targeting.

In ADKDD’10, The 4th International Workshop on Data Mining and Audience

Intelligence for Advertising.

Rijsbergen, C.J. (1979). Information Retrieval. London: Butterworths, 2nd Edition.

Salton, G., & Buckley., C. (1988). Term-weighting approaches in automatic text

retrieval. Information Processing and Management: an International Journal,

24, 513-523.

Wolin, L.D. (2003). Gender Issues in Advertising An Oversight Synthesis of

Research: 1970 2002. Journal of Advertising Research, 43(1), 111-129.

Yan , J., & Liu, N., & Wang, G., & Zhang, W., & Jiang, Y., & Chen, Z. (2009). How

much can Behavioural Targeting Help Online Advertising? Proceedings of the

18th international conference on World Wide Web. Madrid, Spain.

	Contents
	Abstract
	1. Introduction
	2. Online advertising and behavioural targeting
	3. Distributed processing
	4. Dataset
	4.1 Data representation
	5. Experimental Design
	5.1 Symbols
	5.2 Evaluation metrics
	5.2.1 Within- and Between- Ads similarity
	5.2.2 Ads Click-Through Rate
	5.2.3 Precision, Recall and F-measure
	6. Implementation details
	6.1 Dataset
	6.2 Building user vector
	6.3 Clustering user vectors
	6.4 CTR analysis on users clusters
	6.5 Within- and between-ads user similarity
	6.6 F-measure, Precision and Recall
	7. Results
	7.1 Within- and between-ads user similarity
	7.2 CTR improvement
	7.3 Precision, Recall and F-measure
	8. Discussion
	9. References

